
ALICE: A 3-D TOOL FOR

INTRODUCTORY PROGRAMMING CONCEPTS

Stephen Cooper
Computer Science

Dept.
Saint Joseph's

University
Philadelphia, PA

19131
scooper@sju.edu

Wanda Dann
Computer Science

Dept.
Ithaca College

Ithaca, NY 14850
wpdann@ithaca.edu

Randy Pausch
Computer Science

Dept.
Carnegie Mellon

University
Pittsburgh, PA 15213
pausch@cs.cmu.edu

ABSTRACT
In learning to program, many students struggle with developing algorithms,
figuring out how to apply problem solving techniques in their programs,
and with how to use common programming constructs. In this paper, we
present a new tool that provides a possible approach to actively engage
students in increasing their knowledge and skills in these areas. The tool is
Alice, a 3-D interactive animation environment.

1 INTRODUCTION
Experienced teachers of CS1 and other introductory programming courses are often
painfully aware of the wide spectrum of backgrounds students bring with them upon
entry to the course. The dilemma is that if we teach at the level of the most poorly
prepared students, the top-level students are bored and may become highly frustrated
at the lack of progress and challenge. If we teach at the level of the best-prepared
students, the students at the lower level become so confused that they are likely to
drop the course. And finally, if we teach at the level of the students in the middle, the
needs of students at both upper and lower levels are not being addressed.

We could debate at length the relative merits of each approach as well as possible
teaching methodologies (such as cooperative learning). In this paper, however, we
focus on the preliminary stage -- preparing students for learning programming
concepts. While students at the top-level could skip this preliminary stage, good
students who have weak backgrounds could be given an opportunity to fill in the gaps.

1.1 What Is Missing?
First, we need to think about what might be missing in the backgrounds of students in
the lower range of the spectrum, as described above. It is easy to say that they “do not
know how to solve problems.” But this is too simplistic. These students have likely
achieved a certain level of competency in mathematics and problem solving–at least
through courses such as algebra and pre-calculus. We contend that these students are
not strong problem solvers in the particular ways that are necessary for success in
computer programming. We believe students need to develop an increased level of
competency in how to design an algorithm for solving a problem and how to use

specific programming statements in accomplishing that goal. As stated by Soloway1,
the real difficulty for novice programmers lies in “putting the pieces together”, i.e. in
figuring out what constructs to use and how to coordinate those constructs. Without
this background, many students are not prepared to solve problems in the way they
need to be solved in a computer program.

One other serious problem that plagues many students is that learning to write,
test, and debug programs requires that the student learn why and how the program
(computer) solves the problem. We have observed that many students are unable to
visualize the steps of the execution of the program. As a result, they cannot figure out
what went wrong when things do not work. In imperative languages, a trace of the
program with memory snapshots can be used in an effort to assist students in figuring
out what is going on. However, using traces may actually add to some students’
confusion! We believe the source of confusion in figuring out what went wrong, in all
but the most trivial code, is an inadequate understanding of the program’s state.

What we want to do is provide an environment in which students can learn the
kinds of problem solving strategies and the necessary concepts and skills needed for
creating computer programs. Animation of program execution can be used to help the
student “put the pieces together”. Visualization is one approach to assisting the
learner in finding out what task each piece can be expected to perform and how the
pieces work together to perform the overall task of solving the problem at hand. For
this purpose, we are using a new 3-D interactive animation tool, Alice.

1.2 Previous Work
The use of animation to show program execution is not a new idea2, 3, 4. Among the
many researchers who argue for visualization, Shu5 presents a particularly strong case.
He considers programming to require both parts of the brain, and focuses on the need
to involve the artistic half – expressing the need to involve pictures in the process.

A popular attempt to provide visualization has been the use of sophisticated
graphics packages/libraries (often developed by the instructor or a textbook author).
These packages have introduced visual aspects into programming. However, our
experiences in working with such packages have been that they were fairly complex,
and often difficult for beginners. They also tended to rely on an underlying
programming language (such as C or scheme) that the students needed to learn and
master.

Attempts in algorithm animation, e.g. XTANGO6 and BALSA7, have been
developed with the idea of incorporating visualization into the learning process. Most
of these attempts have been targeted at CS1 students and at students in higher levels.

1 Soloway, E.M. Learning to Program = Learning to Construct Mechanisms and
Explanations. Communications of the ACM, 29 (1986), 850-858.

2 Naps, T.L. Chair, Working Group on Visualization. An Overview of
Visualization: its Use and Design. in Proceedings of the Conference on Integrating
Technology into Computer Science Education. Barcelona, Spain,(June 1996), 192-200.

3 Pattis, R., Karel the Robot. New York: John Wiley & Sons, 1981. Rodger, S.H.
Integrating Animations Into Courses. in Proceedings of the Conference on Integrating
Technology into Computer Science Education, Barcelona, Spain (June 1996) 72-74.

4 Stasko, J.T., Dominque, J., Brown, M. and Price, B., eds. Software
Visualization, Programming as a Multimedia Experience. Cambridge:MIT Press,
1998.

5 Shu, N.C., Visual Programming. New York: Van Nostrand Reinhold Co, 1988.
6 Stasko, J.T. Animating Algorithms with XTANGO. SIGACT News, 23 (1992),

67-71.

One of the most successful program simulation software packages, used for
program visualization, has been Karel, The Robot 8. The Karel software has been used
as a gentle introduction to programming at both high school and college levels for
many years. Karel is a wonderful tool for setting the stage, preparing students for
success in learning Pascal. Over the last decade, curricula for CS1 have made a
transition to C and then to object oriented languages. In response, Karel has
undergone several updates, the latest being Karel++ 9, a C++ like version that brought
Karel into the object-oriented age. However, Karel++ introduces a significant level of
code complexity (and corresponding increase in the learning curve) over that required
in Karel. We believe that Alice can be used to follow Karel’s tradition with a 3-D,
animated environment where students can create their own virtual worlds. 3-D worlds
are more realistic than their 2-D counterparts. These virtual worlds can be displayed
on a web page (via a browser plug-in, similar to Macromedia Flash).

1.3 Instructional Experience
We used Alice as an instructional tool for two summer sessions at Ithaca College.
High school students were enrolled in a special Summer College program. The goal of
the course was to provide an opportunity for students to learn the fundamental
concepts of programming and problem solving. Our observations of students working
with Alice are the basis of viewpoints presented in this paper. The authors’ textbook
for programming in Alice (draft copy at www.ithaca.edu/wpdann/alice1298) is a
reflection of experiences gained from working with these students. The true success of
our approach will not be fully known until these students enter college and their
performance can be compared with students who did not work with Alice. A first
course in visual programming using Alice, will be offered in the fall '00 semester for
full time college students. Discussions have begun about doing the same at St.
Joseph’s University.

2 WHAT IS ALICE?
Alice (http://www.alice.org) is a 3-D Interactive Graphics Programming Environment
for Windows10 built by the Stage 3 Research Group at Carnegie Mellon University
under the direction of Randy Pausch. The goal of the Alice project is to make it easy
for novices to develop interesting 3-D environments and to explore the new medium
of interactive 3-D graphics. Alice is primarily a scripting and prototyping environment
for 3-D object behavior.

3-D models of objects (e.g., animals and vehicles) populate a virtual world in
Alice. Alice has an object oriented flavor. By writing simple scripts, Alice users can
control object appearance and behavior. During script execution, objects respond to
user input via mouse and keyboard. Each action is animated smoothly over a specified
duration. (This replaces the traditional animation methodology, where the animator
prepares many frames and then uses a frame animator to view a succession of frames
in rapid sequence.) Alice is built on top of the programming language Python
(http://www.python.org) and uses many of Python’s features.

7 Brown, M.H., Algorithm Visualization. Cambridge, MA: M.I.T. Press, 1988.
8 Pattis, op. cit.
9 Bergin, J., Stehlik, M., Roberts, J., and Pattis, R., Karel++, A Gentle

Introduction to the Art of Object-Oriented Programming, New York: Wiley & Sons,
1997.

10 Pausch, R. (head), Burnette, T, Capeheart, A.C. , Conway, M., Cosgrove, D.
DeLine, R., Durbin,J., Gossweiler,R., Koga,S., White, J. Alice: Rapid Prototyping
System for Virtual Reality , IEEE Computer Graphics and Applications, May 1995.

Alice serves as a good programming language for the novice programmer.
Students are immediately able to see how their animated programs run. The highly
visual feedback allows the student to relate the program “piece” to the animation
action. This leads to an understanding of the actual functioning of different
programming language constructs. Below we describe many of the programming
language constructs featured in Alice.

2.1 Actions (state transformers)
Alice provides several built-in action commands. In general, actions can be
subdivided into two categories: those that tell an object to perform a motion and those
that change the physical nature of an object. Motion commands include moving
objects within the world (e.g. Move), rotating them about their 3-D axes (e.g. Turn
and Roll), and pointing at other objects (e.g. PointAt). Commands that change the
physical nature of objects include object destruction (Destroy), dynamic object
creation (e.g., AddObject), object resizing (Resize), and making objects
visible/invisible (e.g. Hide and Show).

While it is beyond the scope of this paper to discuss all of Alice’s action
commands (the commands listed above are a subset), we discuss the Turn action to
illustrate details. Turning is allowed in 4 directions: Forward, Back, Right, and Left. In
the Turn command, it is only necessary to specify which object is to be turned, the
direction it is to be turned, and how much it is to be turned. Figure 1 illustrates turning
along one of the rotational axes.

Figure 1. Rotating an object backwards

2.2 Named instructions
It is possible in Alice to name a sequence of instructions. The concept of a named
instruction is similar to the procedure concept in many other programming languages
(or a function that just performs side effects, not returning anything). While in
traditional programming languages, it may not be clear why a group of statements
should be blocked into a function/procedure, in Alice it makes intuitive sense. By
collecting the 10-20 Move and Turn instructions it takes to make a bunny hop, and
naming this entire sequence of instructions Hop, it becomes clear to the student that

DoInOrder(
Hop,
Hop)

causes the bunny to hop twice. Again, the animation aspect of Alice allows the student
to immediately visualize the functionality of program constructs.

2.3 Functions
Functions in Alice are supported through the underlying Python language. In Alice,
functions are primarily used in the implementation of recursion/looping, and in the

implementation of interactions via events. Also, they can be useful in computation.
For example, the howmany function, illustrated below, calculates how many turns a
ball will make based on its diameter and the distance it will travel.

def howmany (dist, diam):
 return dist / (3.14 * diam)

2.4 Decisions
As with functions, decisions are supported through the underlying Python language.
Because of the visual feedback in Alice, students are able to see immediately the
results of a decision statement. For example, in the statement:

if cat.DistanceTo(Fish) < 1.0:
DoInOrder(
 cat.Move(Up, 0.5),

 cat.Move(Down, 0.5))
if the distance between the cat and the Fish is less than one unit, the student sees the
cat jump up and down.

2.5 Recursion/Looping
Alice provides support for repetition through the Loop instruction. For example, if
Hop, a named instruction, has been previously defined then Loop (Hop, 5) causes the
bunny to hop 5 times. The possibility exists for constructing the traditional while loop
in Alice (through the use of the Do (action, EachFrame) construct). However, our
preferred approach is to use generalized recursion through the SetAlarm command.
While the concept of recursion may seem quite alarming to students, it really need not
be. The following code snippet defines a recursive function named Chase. In the
Chase function, the Fish moves towards the cat until it is within 2 distance units of the
cat.
 def Chase():
 if Fish.DistanceTo(cat) > 2:
 DoInOrder(
 Fish.PointAt (cat),
 Fish.Move (Forward, 1),
 Alice.SetAlarm (2, do(Chase)))
Simply put, this code checks whether the Fish is close enough to the cat. If not, the
Fish moves 1 directional unit towards the cat, and the alarm is set to repeat the whole
process. In our experience with students using Alice, we observed that students find
the recursive action easy to understand. Having an explicit (and therefore visible)
delay between the recursive calls seems to help students comprehend the action.

2.6 Events/Interactions
Alice provides support for event handling and for creating GUIs with control panels,
list boxes, check boxes, and sliders. Events allow the user to interact with the animated
world. Alice’s approach is similar to the widgets used in Java, where instructions are
issued to place the appropriate widgets onto a control panel (not a drag-and-drop
interface as used in Visual Basic).

3 ISSUES
Designing a course that centers on Alice as the primary instructional tool presented a
number of pedagogical issues. These issues can be organized into four major areas:
graphics concepts, the notion of state, programming and programming language
concerns, and event-driven programming. In this section, we discuss the questions

that were asked, decisions that were made, and several concerns we still have in these
areas. We remain open to constructive discussion and debate on these issues.

3.1 Graphics and Animation Concepts
A question that must be answered is how much do students need to know about 3-D
graphics and animation. We found that Alice lowers the cognitive burden of creating
3-D interactive programs by providing built-in methods that support object positioning
and motion. Thus, it was NOT necessary to spend many hours teaching students how
to move and position an object within the world. Nonetheless, students must gain an
understanding of the coordinate system and the spatial relationship of objects to one
another. Each object in the world has its own egocentric orientation, as illustrated in
Figure 2. (Note the right and left orientation is from the perspective of the helicopter
object.)

While this seems simple enough, it becomes more complex in worlds containing
several objects. As seen in Figure 3, each object has its own orientation that may or
may not be aligned with another object in the same scene. As objects move around in
the world, their spatial orientation with respect to other objects may change. Alice
provides good support for aligning the orientation of objects and allows an object to be
positioned “AsSeenBy” another object within the world, or to be “placed” on top of
another object.

 Figure 2. Six Degree Orientation Figure 3. Different Orientations

3.2 Notion of State
An Alice world animation visually embodies the notion of state. The advantage
afforded by the visual feedback of running the animation is that, at any instance in
time, the student can easily see the current state. The location of each object, its color,
and its distance to other objects are all intuitively known. There is no need to draw
abstract versions of memory maps with labeled boxes for variables. There is no need
for tedious hand traces of variable assignments.

3.3 Program and Language Constructs
A primary concern is that flow of execution is complicated by the fact that an Alice
animation depicts simultaneously running processes. For example, suppose a virtual
world where the aim is to move a bunny forward 2 directional units and then to move
it backward 2 units. Here is a first try:

bunny.Move(Forward, 2)
bunny.Move(Back, 2)

When the above program snippet is executed, the bunny does not move at all! This is
because, by default, Alice causes all animations to occur together, simultaneously.

Fortunately, Alice offers two control structures, DoTogether and DoInOrder, that
allows the programmer to choose either simultaneous or sequenced actions. So, to
instruct the bunny to move forward and then move back, we write:

DoInOrder (
bunny.Move(Forward, 2),
bunny.Move(Back, 2))

3.4 Events and Responses
The real challenge we encountered in teaching students about events and event
handling was in providing a means for understanding how the control panel (and its
widgets) are linked to the response. We are still working on this issue. An example of
event-driven programming using the Alice programming environment can be found at
www.ithaca.edu/wpdann/alice72.zip

4 PROBLEMS AND BENEFITS
As with many languages, Alice error messages are sometimes cryptic. We encountered
difficulties as students moved away from simple closed animations (no user I/O) to
more complex animations (requiring responses to events). The interweaving of Alice
and Python statements requires some knowledge of what is an Alice statement and
what is directly drawn from Python. For example, consider the function defined here:

def silly() :
DoInOrder(
 if cat.distanceTo (Fish) > 0.5:

 cat.Move (Forward, 0.5),
 Fish.Move (Back, 0.5),
 Fish.Turn (Left))
As of this writing, this function fails because the if statement is a Python statement
(not an Alice animation statement) and, thereby, cannot be written inside Alice’s
DoInOrder construct because Alice does not know what to do with the Python
statement inside the construct. One solution is to rearrange the code to position the if
statement outside the DoInOrder:
 def silly() :
 if cat.distanceTo (Fish) > 0.5:
 cat.Move(Forward, 0.5)
 DoInOrder(

 Fish.Move (Back, 0.5),
 Fish.Turn (Left)

)
A closely related problem is that of timing. The time duration (default is 1

second) can be a real problem in some scenarios. For example, in a recursive function,
the animation takes a certain amount of time but the computer goes right on with its
recursive calls. The result is that successive calls to the recursive function may be run
simultaneously, rather than successively, if the timing is not handled correctly.

We believe that Alice provides some real benefits in teaching concepts of
problem solving in the particular way used in computer programming as well as in
teaching the fundamental programming constructs. A major benefit is the high level of
student interest and involvement. The ability to make changes in program code and,
within seconds, observe the effect on their animation contributed to sustaining that
interest. Students were enthusiastic, voluntarily devoting much extra time to projects
they considered fun and worthwhile. Based on student evaluations, it seems that
students developed a justifiable sense of self-confidence in their programming skills.

Importantly, we saw that students exhibited an intuitive feel for objects, methods, and
programming constructs such as repetition/recursion.

On the programming side of things, a number of significant benefits should be
noted. There is, in general, no need for variables in Alice. The student issues
commands that directly affect the objects in the animated world. In most programs, the
student does not have to think whether a variable x has a value 5. The student can
focus on the programming language constructs and how they work rather than
variables and how they are modified.

The animated, virtual world is the state in Alice. Actually, this statement is not
quite true (particularly as regards event handling). But, the student may view the
animation as the state, simply looking at an animated world to see the location and
orientation of objects in the world. Input and output are (generally) limited to the use
of widgets/events. This is quite similar to the graphical modes of other languages, and
tightly controls the environment. Students do not need to worry about input/output,
except as confined to what reactions Alice should perform in response to events such
as mouse clicks on widgets in the GUI.

5 CONCLUSION
Alice provides a 3-D animated programming environment that supports one approach
for teaching problem solving in the particular way used in programming. We used
Alice to develop algorithms for animating objects that populate virtual worlds. We
observed that students were comfortable using objects and invoking methods on those
objects. Students were able to watch what went wrong in their programs and easily
debug and correct them. Future enhancements, a “no-typing” syntax-automated
editor, promise to enrich the students’ experience with Alice .

ACKNOWLEDGEMENT
Alice and the Stage3 Research Group are sponsored by DARPA, NSF, Intel, Chevron,
Advanced Network & Services, Inc., Microsoft Research, PIXAR, and NASA. The
Stage 3 Research Group includes Steve Audia, Dennis Cosgrove, Adam Fass, Andrew
Faulring, Cliff Forlines, Caitlin Kelleher, Shawn Lawson, Daniel Maynes-Aminzade,
Dan Moskowitz, Jeff Pierce, Jason Pratt, Dave Stern-Gottfried, and Desney Tan.

