

Teaching Objects-first In Introductory Computer Science

Stephen Cooper*
Computer Science Dept.
Saint Joseph's University
Philadelphia, PA 19131
scooper@sju.edu

Wanda Dann*
Computer Science Dept.
Ithaca College
Ithaca, NY 14850
wpdann@ithaca.edu

Randy Pausch
Computer Science Dept.
Carnegie Mellon University
Pittsburgh, PA 15213
pausch@cmu.edu

Abstract
An objects-first strategy for teaching introductory computer
science courses is receiving increased attention from CS
educators. In this paper, we discuss the challenge of the
objects-first strategy and present a new approach that
attempts to meet this challenge. The new approach is
centered on the visualization of objects and their behaviors
using a 3D animation environment. Statistical data as well
as informal observations are summarized to show evidence
of student performance as a result of this approach. A
comparison is made of the pedagogical aspects of this new
approach with that of other relevant work.

1 Introduction
The ACM Computing Curricula 2001 (CC2001) report [8]
summarized four approaches to teaching introductory
computer science and recognized that the “programming-
first” approach is the most widely used approach in North
America. The report describes three implementation
strategies for achieving a programming-first approach:
imperative-first, functional-first, and objects-first. While the
first two strategies have been utilized for quite some time, it
is the objects-first strategy that is presently attracting much
interest. Objects-first “emphasizes the principles of object-
oriented programming and design from the very
beginning…. [The strategy] begins immediately with the
notions of objects and inheritance….[and] then goes on to
introduce more traditional control structures, but always in
the context of an overarching focus on object-oriented
design” [8, Chapter 7].
The Challenge of Objects-first: The authors of CC2001
admit that an objects-first strategy adds complexity to
teaching and learning introductory programming. Why is
this so? The classic instruction methodology for an
__
*This work was partially supported by NSF grant DUE-0126833

introduction to programming is to start with simple
programs and gradually advance to complex programming
examples and projects. The classic approach allows a
somewhat gentle learning curve, providing time for the
learner to assimilate and build knowledge incrementally.
An objects-first strategy is intended to have students work
immediately with objects. This means students must dive
right into classes and objects, their encapsulation (public
and private data, etc.) and methods (the constructors,
accessors, modifiers, helpers, etc.). All this is in addition to
mastering the usual concepts of types, variables, values, and
references, as well as with the often-frustrating details of
syntax. Now, add event-driven concepts to support
interactivity with GUIs! As argued by [11], learning to
program objects-first requires students grasp "many
different concepts, ideas, and skills…almost concurrently.
Each of these skills presents a different mental challenge."

The additional complexity of an objects-first
strategy is understood when considered in terms of the
essential concepts to be mastered. The functional-first
strategy initially focuses on functions, deferring a
discussion of state until later. The imperative-first strategy
initially focuses on state, deferring a discussion of functions
until later. The objects-first strategy requires an initial
discussion of both state and functions. The challenge of an
objects-first strategy is to provide a way to help novice
programmers master both of these concepts at once.

2 Instructional Support Materials
In response to interest in an objects-first approach, several
texts and software tools have been published/developed that
promote this strategy (such as [1, 12]). Four recent software
tools are worthy of mention as using an objects-first
approach: BlueJ [9], Java Power Tools [11], Karel J. Robot
[2], and various graphics libraries. Interestingly, all these
tools have a strong visual/graphical component; to help the
novice “see” what an object actually is – to develop good
intuitions about objects/object-oriented programming.

BlueJ [9] provides an integrated environment in
which the user generally starts with a previously defined set
of classes. The project structure is presented graphically, in
UML-like fashion. The user can create objects and invoke
methods on those objects to illustrate their behavior. Java
Power Tools (JPT) [11] provides a comprehensive,
interactive GUI, consisting of several classes with which

the student will work. Students interact with the GUI, and
learn about the behaviors of the GUI classes through this
interaction. Karel J. Robot [2] uses a microworld with a
robot to help students learn about objects. As in Karel [10],
Robots are added to a 2-D grid. Methods may be invoked
on the robots to move and turn them, and to have the robots
handle beepers. Bruce et al. [3] and Roberts [13] use
graphics libraries in an object-first approach. Here, there is
some sort of canvas onto which objects (e.g. 2-D shapes)
are drawn. These objects may have methods invoked on
them and they react accordingly.

In the remainder of this paper, we present a new
tactic and software support for an objects-first strategy. The
software support for this new approach is a 3D animation
tool. 3D animation assists in providing stronger object
visualization and a flexible, meaningful context for helping
students to “see” object-oriented concepts. (A more detailed
comparison of the above tools with our approach is
provided in a later section.)

3 Our Approach
Our motivation in researching and developing this new
approach is to meet the challenge of an objects-first
approach. Our approach meets the challenge by:

• Reducing the complexity of details that the novice
programmer must overcome

• Providing a design first approach to objects
• Visualizing objects in a meaningful context

In this approach, we use Alice, a 3D interactive, animation,
programming environment for building virtual worlds,
designed for novices. The Alice system, developed by a
research group at Carnegie Mellon under direction of one of
the authors, is freely available at www.alice.org. A brief
description of the interface is provided.

Figure 1. The Alice Interface

Alice provides an environment where students can
use/modify 3D objects and write programs to generate
animations. A screen-capture of the interface is shown in
Figure 1. The interface displays an object tree (upper left)
of the objects in the current world, the initial scene (upper

center), a list of events in this world (upper right), and a
code editor (lower right). The overlapping window tabs in
the lower left allow for querying of properties, dragging
instructions into the code editor, and the use of sound.
Student Programs: A student adds 3D objects to a small
virtual world and arranges the position of each object in the
world. Each object encapsulates its own data (its private
properties such as height, width, and location) and has its
own member methods. While it is beyond the scope of this
paper to discuss all the details, a brief example is discussed
below to illustrate some of the principles. Interested readers
may wish to read [4, 6, 7] for a more complete description.
Figure 2 contains an initial scene that includes a frog
(named kermit), a beetle (ladybug), a flower (redFlower),
and several other objects around a pond.

Figure 2. An initial scene in an Alice world

Once the virtual world is initialized, the program code is
created using a drag-and-drop smart editor. Using the
mouse, an object is mouse-clicked and dragged into the
editor where drop-down menus allow the student to select
from primitive methods that send a message to the object. A
student can write his/her own user-defined methods and
functions, and these are automatically added to the drop-
down menus.

In this example, the task is for kermit to hop over
to the ladybug. The code is illustrated in Figure 3. It is
interesting to note that the built-in predicates (“Questions”
in Alice-lingo) “is at least m meters away from n”, “is
within x meters of y”, and “is in front of z” all return
spacial information about the objects in question. (Users
may define their own, user-defined, questions, at both the
world-level as well as at the character-level.) The
bigHop(number n) and littleHop() methods are both
character-level. In other words, the basic frog class has
been extended to create a frog that knows how to make a
small hop and how to hop over a large object (receiving a
parameter as to how high it must hop).

Figure 3. The code to have kermit hop over to the ladybug

This example illustrates some important aspects of our
approach. The mechanism for generating code relies on
visual formatting rather than details of punctuation. The
gain from this no-type editing mechanism is a reduction in
complexity. Students are able to focus on the concepts of
objects and encapsulation, rather than dealing with the
frustration of parentheses, commas, and semicolons. We
hasten to note that program structure is still part of the
visual display and the semantics of instructions are still
learned. A switch is used to display Java-like punctuation to
support a later transition to C++/Java syntax.

Three-dimensionality provides a sense of reality
for objects. In the 3D world, students may write methods
from scratch to make objects perform animated tasks. The
animation task provides a meaningful context for
understanding classes, objects, methods, and events.

4 Observations
We have been teaching and researching this new objects-
first approach in an introduction to programming course for
the past 3 years. One of the authors uses this approach in a
½ semester course that students take concurrently with CS1.
Another author uses this approach as part of a course that
students take before CS1. While early quantitative results
are discussed in the next section, we present more informal
observations in this section.

Strengths: We have seen that students develop:

• A strong sense of design. In our approach, we use
storyboarding and pseudocode to develop designs. This
may be influenced by the nature of our open-ended
assignments. However, we see students in later classes
writing down their thoughts about an assignment on
paper first, before going to the computer.

• A contextualization for objects, classes, and object-
oriented programming. We believe that this is one of the
big “wins” for our approach. Everything in the student’s
virtual world is an object! Exercises and lab projects set

up scenes where objects fly, hop, swim, and interact in
highly imaginative movie-like simulations and games.

• An appreciation of trial and error. Students learn to
"try out" individual animation instructions as well as
their user-defined methods. Each animation instruction
causes a visible change in the animation. Students learn
to relate individual instructions, and methods to the
animated action on the screen [7]. This direct
relationship can be used to support development of
debugging skills.

• An incremental construction approach, both for
character (class)-level as well as world-level methods.
Students do not write the whole program first. They
program incrementally, one method at a time, testing out
each piece.

• A firm sense of objects. The strong visual
environment helps here.

• Good intuitions concerning encapsulation. Some
state information can be modified by invoking methods
on an object. For example, an object's position can be
changed by invoking a move method. But the actual
spatial coordinates that represent the object's position
cannot be directly accessed.

• The concept of methods as a means of requesting an
object to do something. The way to make an object
perform a task is to send the object a message.

• A strong sense of inheritance, as students write code
to create more powerful classes.

• An ability to collaborate. Students work on building
the characters individually and then combine them to
build virtual worlds and animations in group projects.

• An understanding of Boolean types. Students are
prevented, by the smart-editor, from dragging incorrect
data-type expressions into if statements and loops, for
example.

• A sense of the program state. This is of particular
importance, as mentioned earlier in this paper. This topic
is discussed at length in [7].

• An intuitive sense of behaviors and event-driven
programming.

One other observation is that it is possible to have
students either create their programs from scratch or to
build virtual worlds with characters which already have
many specialized methods pre-defined. This latter case
allows students to experiment with modifying existing
classes/programs.

Weakness: A strength of our approach is also a source of
weakness. Students do not develop a detailed sense of
syntax, even with the C++/Java syntax switch turned on, as
they only drag the statements/expressions into the code
window. They do not get the opportunity to experience such
errors as mismatched braces, missing semicolons, etc. Our
experience with students making the transition from Alice
to C++/ Java is that students quickly master the syntax.

5 Results
Table 1 illustrates the results of students at Ithaca College
and Saint Joseph’s University who took a course using our
proposed approach during the 2001-2002 school year. The
weakest 21 CS majors (defined as those CS students who
were not ready for calculus and who had no previous
programming experience) were invited to take a course
using our approach, either concurrent with, or preliminary
to CS1. 11 of the 21 students took the course, while 10 did
not. (Some students who did not take the course had
scheduling conflicts.)

Statistics All Test Control
Students 49 11 10
Mean 2.49 2.8 1.3
Median 2.75 3 1.25
Variance 1.62 0.75 1.22

Table 1: Students taking Alice, 2001-2002

The results show that the 11 students who took the Alice-
based course did better in CS1 than the total group, and
significantly better than the 10 students who were of a
similar background. Not only did the control group perform
better in CS1, the lower variance indicates that a smaller
percentage of those students performed poorly in CS1.
Perhaps the most telling statistic is the percentage of
students who continued on to CS2, the next computer
science class. 65% of all the students who took CS1
continued on to CS2. Of the students in the test group (who
took our course with Alice), 91% continued on to CS2.
Only 10% of the control group enrolled in CS2. A larger
group of students is being studied (in much more detail) this

current (2002-2003) academic year, as part of an NSF
supported study.

The authors have a textbook (to be published by
Prentice-Hall for Fall 2003). An early draft is available at
www.ithaca.edu/wpdann/alice2002/alicebook.html The
URL for the solutions is available by contacting the authors.
And, a set of lecture notes and sample virtual worlds is
available at:
http://www.sju.edu/~scooper/fall02csc1301/alice.html

6 Comparison with other tools
In this section we explore what we consider to be our
relative strengths and weaknesses as compared to other
object-first tools mentioned earlier. It is important to note
that, as we have not seen studies detailing actual
effectiveness of many of the other tools, we are hesitant to
state too strongly the degree to which we think such tools
do or do not work.

Events: JPT makes heavy use of GUIs, and both JPT and
Bruce’s ObjectDraw library rely on event-driven
programming. Kölling and Rosenberg [9] state that building
GUIs is “very time intensive”, and argue that the GUI code
is an “example that has very idiosyncratic characteristics
that are not common to OO in general.” Culwin [5] argues
“the design of an effective GUI requires a wider range of
skills than those of software implementation…. Even if an
optimal interface is not sought at this stage it must be
emphasized to students…that there is much more to the
construction of a GUI than the collecting together of a few
widgets and placing it in front of the user.” While we might
not go as far as these criticisms, it is clear that event
handling does add a layer of complexity. In our approach,
the use of events is optional and is accomplished through
the use of several powerful primitives. This makes the
presentation of events and event handling quite simple. We
disagree with the statement “it is not possible to do Objects-
first” without also doing GUI First!”[11], as both our
approach and some of the graphics libraries do accomplish
an object-first approach without the use of a GUI (though
adding events generally makes virtual worlds much more
fun for the students).

Modifying existing code: BlueJ and JPT depend on starting
with programs that consist of previously written code.
Bruce is concerned “these approaches will leave students
feeling they have no understanding of how to write
complete programs.” The BlueJ and JPT authors maintain
that, due to complexity of object-oriented design, it is
favorable for novices to start with partially/completely
developed projects and to modify them. Our approach
allows the instructor to choose to use partially developed
programs in introductory worlds. But, we generally have
students build virtual worlds from scratch.

Use of the tool throughout the CS1 course: Each of these
tools, with the exception of Karel J. Robot, is (or at least
seems to be) capable of being used throughout the CS1
course. We have designed lecture materials to be used as an

initial introduction to object-oriented programming,
occupying the first 3-6 weeks of a CS1 course. It would be
possible to intersperse the teaching of Alice with the
teaching of, say, Java, throughout the semester.

Complexity of syntax: The use of graphics libraries is
likely the most complex approach. Even though libraries
are provided, students still must write Java/C++ programs
from scratch, mastering a non-trivial amount of syntax
(regardless whether they understand the semantics of what
they are writing). Then they need to understand the
particulars of the graphics library. Karel J. Robot has a fair
bit of Java that needs to be mastered before being able to
write a program. The BlueJ and JPT approaches are
somewhat simpler, as students only modify existing code.
Yet, it is still necessary to write correct Java code, and
certain errors (such as missing brackets or trying to place
code in the wrong location, or invoking a method with a
bad parameter) can lead to errors in the code provided to
the student -- and the student may not know how to start
debugging code that he/she did not write.

Concurrency: As Culwin writes [5], “if an early
introduction of GUIs is advocated within an object first
approach, the importance of concurrency cannot be
avoided.” Alice supports concurrency, providing primitives
for performing actions simultaneously.

Examples: This is a challenge for all objects-first
approaches. Developing a large collection of examples
(whether to be used as instructional aids, assignments or
exam questions) is a time-consuming task that must be
solved if these tools, together with their associated
approach are to be successful. One product of our research
efforts is a resource of examples, exercises, and projects
with solutions. It does need to be made larger, which we
are doing each semester.

7 Conclusions
The authors strongly believe that, as long as object-oriented
languages are the popular language of choice in CS1, the
objects-first approach is the best way to help students
master the complexities of object-oriented programming.
We believe that other tools mentioned here are quite useful
in teaching objects-first. (We have used most of them
ourselves.) We have been particularly impressed with the
results we have seen so far with the approach we have
presented here – we have been able to significantly reduce
the attrition of our most at-risk majors. The current NSF
study will examine the effectiveness of our proposed
approach in greater detail, and with larger numbers of
students. Additionally, we hope to gain feedback from some
of the additional institutions that are using our materials and
our approach.

References
[1] Arnow, D. and Weiss, G. Introduction to programming

using Java: an object-oriented approach, Java 2 update.
Addison-Wesley, 2001.

[2] Bergin, J., Stehlik, M., Roberts, J., and Pattis, R. Karel
J. Robot a gentle introduction to the art of object
oriented programming in Java. Unpublished
manuscript, available [August 31, 2002] from:
http://csis.pace.edu/~bergin/KarelJava2ed/Karel++Java
Edition.html

 [3] Bruce, K., Danyluk, A., & Murtagh, T. A library to
support a graphics-based object-first approach to CS 1.
In Proceedings of the 32nd SIGCSE technical
symposium on Computer Science Education (Charlotte,
North Carolina, February, 2001), 6-10.

[4] Cooper, S., Dann, W., & Pausch, R. Using animated 3d
graphics to prepare novices for CS1. Computer Science
Education Journal, to appear.

[5] Culwin, F. Object imperatives! In Proceedings of the
30th SIGCSE technical symposium on Computer
Science Education (New Orleans, Louisiana, March,
1999), 31-36.

[6] Dann, W., Cooper, S., & Pausch, R. Using visualization
to teach novices recursion. In Proceedings of the 6th
annual conference on Innovation and Technology in
Computer Science Education (Canterbury, England,
June, 2001), 109-112.

[7] Dann, W., Cooper, S., & Pausch, R. Making the
connection: programming with animated small worlds.
In Proceedings of the 5th annual conference on
Innovation and Technology in Computer Science
Education (Helsinki, Finland, July, 2000), 41-44.

[8] Joint Task Force on Computing Curricula. Computing
Curricula 2001 Computer Science. Journal of
Educational Resources in Computing (JERIC), 1 (3es),
Fall 2001.

[9] Kölling, M. & Rosenberg, J., Guidelines for teaching
object orientation with Java. In Proceedings of the 6th
annual conference on Innovation and Technology in
Computer Science Education (Canterbury, England,
June, 2001), 33-36.

[10] Pattis, R., Roberts, J, & Stehlik, M. Karel the robot: a
gentle introduction to the art of programming, 2nd
Edition. John Wiley & Sons, 1994.

[11] Proulx, V., Raab, R., & Rasala, R. Objects from the
beginning – with GUIs. In Proceedings of the 7th
annual conference on Innovation and Technology in
Computer Science Education (Århus, Denmark, June,
2002), 65-69.

[12] Riley, D. The object of Java: Bluej edition. Addison-
Wesley, 2002.

[13] Roberts, E. & Picard, A. Designing a Java graphics
library for CS1. In Proceedings of the 3rd annual
conference on Innovation and Technology in Computer
Science Education (Dublin, Ireland, July, 1998), 213-
218.

	Randy Pausch
	1 Introduction
	The Challenge of Objects-first: The authors of CC2001 admit that an objects-first strategy adds complexity to teaching and learning introductory programming. Why is this so? The classic instruction methodology for an
	2 Instructional Support Materials
	
	
	
	
	3 Our Approach

	Figure 1. The Alice Interface
	Figure 2. An initial scene in an Alice world
	F
	Figure 3. The code to have kermit hop over to the ladybug
	5 Results

	Statistics
	
	
	6 Comparison with other tools

	7 Conclusions
	References

