
184

Appendix A

Reference: Built-in Methods

The Methods panel has three tabs so as to distinguish between procedural methods, functional

methods, and methods related to that object's specific properties. Figure A.1 illustrates the three

tabs in a side-by-side listing, using penny (a Penguin object) as an example.

Figure A.1 Side-by-side listing of built-in procedural, functional, and property methods

Important concepts:

Procedural methods describe actions that may be performed by an object, such as move,

turn, or roll. These actions often change the location and/or orientation of an object. The

important thing to know about procedural methods is that they each perform an action but

do not compute and return an answer to a question.

Functional methods are expressions that compute and answer a question about an object

such as what is its width or height, or what is its distance from another object.

Properties methods are methods for retrieving (get) and changing (set) specific properties

of an object of this class. These specific properties, such as paint, opacity, name, and

vehicle, are used in animation rendering.

185

As a convenient reference, the remainder of this Chapter describes the method tiles commonly

found in the Procedures, Functions, and Properties tabs for an object in a scene. The Figures and

examples use the alien object, as seen in the screenshot in Figure A.2.

Figure A.2

PROCEDURAL METHODS

Change the size of an object

Every object in Alice has three dimensions, all having a height, width, and depth (even if the

value of that dimension is 0.0; e.g., a disc may have a height of 0.0). These procedures change

the size of an Alice object, by changing all the dimensions at the same time, proportionately.

Procedures that change the value of height, width, or depth are shown in Figure A.3 and

summarized in Table A.1.

Figure A.3 Procedures that change the size of an object

The set procedures change that dimension to the absolute size provided in the statement. For

example if the alien has a height of 1.5 meters, the statement

alien.setHeight height: 2.0

186

will animate the alien growing to a height of 2.0 meters. The value 2.0 is an argument to the

method, to be used as the targeted height.

The resize procedures change a dimension by the factor of the argument value provided in the

statement. For example if the same alien has a height of 1.5 meters, the statement

alien.resizeHeight factor: 2.0

will animate the alien growing to the height of 3.0 meters, as the height of the alien is increased

by a factor of 2.

Table A.1 Procedures that change the size of an object

Procedure Argument(s) Description

setWidth DecimalNumber Changes the value of the object's width to the value of the

argument width, with width and depth changed

proportionately.

setHeight DecimalNumber Changes the value of the object's height to the value of the

argument height, with height and depth changed

proportionately.

setDepth DecimalNumber Changes the value of the object's depth to the value of the

argument depth, with height and width changed

proportionately.

resize DecimalNumber Changes all the dimensions of the object by the value of the

argument factor, proportionately

resizeWidth DecimalNumber Changes the width dimension of the object by the value of

the argument factor, with height and depth changed

proportionately.

resizeHeight DecimalNumber Changes the height dimension of the object by the value of

the argument factor, with width and depth changed

proportionately.

resizeDepth DecimalNumber Changes the depth dimension of the object by the value of

the argument factor, with height and width changed

proportionately.

187

Change the position of an object in the scene

Every object in Alice has a specific position and orientation in the scene. Each object can move

to its left or right, forward or backward, up or down. Procedures that change an object’s position

are shown in Figure A.4 and summarized in Table A.2.

Figure A.4 Procedures that change the position of an object in the scene

Table A.2 Procedures that move an object to a different position in the scene

Procedure Argument(s) Description

move Direction,

DecimalNumber

Animates movement of the object in the

specified direction according to its own

orientation, by the specified amount

moveToward Model, DecimalNumber Animates movement of the object, by the

specified amount, in the direction of the

target object (a 3D Model)

moveAwayFrom Model, DecimalNumber Animates movement of the object, by the

specified amount, directly away from the

position of the target object (a 3D Model)

moveTo Model Animates movement of the object, in the

direction of the target object (a 3D Model)

until the pivot point of the object and the

pivot point of the target are exactly the same;

the original orientation of the object is

unchanged.

188

moveAndOrientTo Model Animates movement in the direction of the

target object (a 3D Model) until the pivot

point of the object and the pivot point of the

target are in exactly the same position and

the orientation of the object is the same as the

orientation of the target object.

place spatialRelation:

ABOVE, BELOW,

RIGHT_OF, LEFT_OF,

IN_FRONT_OF,

BEHIND;

Model

Animates movement of the object, so that it

ends up 1 meter from the target object (a 3D

Model) along the specified spatialRelation

Change the orientation of an object in the scene

Every object in Alice has a specific orientation in the scene, with its own sense of forward and

backward, left and right, up and down. Importantly, each object has a pivot or center point,

around which these rotations occur. Procedures that change an object’s position are shown in

Figure A.5 and summarized in Table A.3.

Figure A.5 Procedures that rotate an object

Turn rotations can be LEFT, RIGHT, FORWARD, or BACKWARD. Roll rotations can only be

LEFT or RIGHT. The rotations occur in the direction of an object's own orientation, not the

camera's point of view and not as seen by the viewer of the animation. For example, if an

object is given an instruction to turn LEFT, the object will turn to its own left (which may or may

not be the same as left for the person viewing the animation).

The amount of a rotation is always described as a fractional part of a full rotation, expressed as a

decimal value. For example, the statement

alien.turn direction: RIGHT, amount: 0.25

189

will animate the alien turning to its right ¼ of a full rotation, expressed as 0.25. Although a full

rotation is 360 degrees and ¼ rotation is 90 degrees, Alice does not use degrees to specify the

rotation amount. So, always convert any amount in degrees to a fractional part of a rotation,

expressed as a decimal value.

Generally a turn will result in an object's sense of forward changing as the animation occurs,

although it may come back to its original orientation if it turns all the way around. A roll will

result in an object's sense of up changing as the animation occurs, although it may come back to

its original orientation if it rolls all the way around. It may be helpful to note that an object's

sense of forward stays the same during a roll.

Table A.3 Procedural methods that rotate an object

Procedure Argument(s) Description

turn Direction,

DecimalNumber

Animates a turn of an object around its pivot point, in

the specified direction according to its own

orientation, by the specified amount, given in

fractional parts of a rotation. The object's sense of

forward will be changing during the animation

roll Direction,

DecimalNumber

Animates a roll of the object around its pivot point, in

the specified direction according to its own

orientation, by the specified amount, given in

fractional parts of a rotation. The object's sense of

forward will remain unchanged during the animation

turnToFace Model Animates a turn of the object around its pivot point, so

that its sense of forward will be in the direction of the

target (a 3D Model object)

orientToUpright Animates a rotation of the object around its pivot

point, so that its sense of up will be perpendicular to

the ground

pointAt Model Animates a rotation of the object around its pivot

point, so that its sense of forward will be in the

direction of the target’s (a 3D Model object) pivot

point

orientTo Model Animates a rotation of the object around its pivot

point, so that its orientation will be exactly the same as

the orientation of the target (a 3D Model object). The

object's position will be unchanged.

190

Other procedures

Some procedures do not neatly fit into the descriptive categories of the preceding paragraphs.

We have collected these procedures into a category called “Other.” These procedures provide

program output (say, think, playAudio), manage timing in an animation (delay), simplify

returning an object to its original position after an animation (straightenOutJoints), and allow

one object to be the vehicle for another object as it moves around the scene (setVehicle). The

Other procedures are shown in Figure A.6 and summarized in Table A.4.

Figure A.6 Other procedures

Table A.4 Other procedures

Procedure Argument(s) Description

straightenOutJoints Restores all the joints of this object to their original

position, when this object was first constructed in the

scene editor

say textString A speech bubble appears in the scene, containing the

value of the text argument, representing something

said by this object

think textString A thought bubble appears in the scene, containing the

value of the text argument, representing something

thought by this object

setVehicle Model Any movement or rotation of the target (a 3D Model

object) will produce a corresponding movement by

this object. This object cannot be a vehicle for itself,

and two objects may not have a reciprocal vehicle

relationship (in other words, this object cannot be the

vehicle of the target object, if the target object is

191

already the vehicle for this object)

delay DecimalNumber The animation pauses for the length of the duration in

seconds

playAudio ??? (sound file) The entire imported sound file (either .mp3 or .wav

format) will be played in the animation. The length of

sound clip that is actually played can be modified in

AudioSource drop-down menu and selecting Custom

Audio Source… See Chapter 5: How to…

Use detail parameter options

Most procedures in Alice have a set of parameters with default argument values. These are

known as detail parameters. The detail parameters enhance or fine tune the animation action

performed when a statement is executed.

Important concepts:

Do in order

 When a delay action is performed within a Do in order, Alice waits the specified number

of seconds before proceeding to the next statement. Calling a delay on the scene will suspend

the animation until the delay is complete.

 When a playAudio action is performed within a Do in order, Alice plays the sound for the

specified amount of time before proceeding to the next statement.

Do together

 When a delay action is performed within a Do together, other statements within the Do

together are not affected. However, the delay does set a minimum duration for execution of

the code block within the Do together. For example, in the code block shown below, the alien

will move and turn at the same time (duration of 1 second), but Alice will not proceed to the

statement following the Do together until the delay is completed (2 seconds).

Do together

alien.turn direction: RIGHT, amount: 0.25

alien.delay duration: 2.0

alien.move direction: FORWARD, amount: 1.00

 bunny.turn direction: LEFT, amount: 1.0

 When a playAudio action is performed within a Do together, Alice starts plays the sound

at the same time as other statements within the Do together are executing (for example, as

background music).

192

Figure A.7

The three most common detail parameters are asSeenBy, duration, and animationStyle. There are

a few procedures that may not use all of these details, or they may have a different set of details,

appropriate for that particular animation. Table A.5 summarizes the detail parameter options.

Table A.5 Details

Detail Values Description

asSeenBy Model The movement or rotational

animation of this object will be

as if this object had the pivot

point position and orientation

of the target object

duration DecimalNumber By default, Alice animation

methods execute in 1 second.

This modifier changes the

duration value to a specified

length of time.

animationStyle BEGIN_AND_END_ABRUPTLY

BEGIN_GENTLY_AND_END_ABRUPTLY

BEGIN_ABRUPTLY_AND_END_GENTLY

BEGIN_AND_END_GENTLY

The default animation style is

BEGIN_AND_END_GENTLY,

which begins with a reasonable

period of acceleration, then

constant movement at some top

speed, followed by a

reasonable period of

deceleration.

Other animation styles:

BEGIN_GENTLY_AND_END_

ABRUPTLY begins with a

gradual acceleration to top

speed and ends with a sudden

193

stop.

BEGIN_ABRUPTLY_AND_EN

D_GENTLY starts at top speed

and ends with gradual

deceleration.

BEGIN_AND_END_ABRUPT

LY starts at top speed and ends

with a sudden stop.

FUNCTIONAL METHODS

Functions that provide access (a link) to an internal joint of an object

The internal joints of an object are part of a skeletal system. For this reason, a function is called

to access an individual joint within the skeletal system. These functions return a link to the joint

(similar to a link that holds the address of a web page on the web).

As an example, some of the functions to access the individual joints of an alien object are

illustrated in Figure A.8 accompanied by an X-ray view of the alien’s internal joints. (NOTE:

Due to page space limitations, not all the alien’s joint access functions are listed here.)

Figure A.8 Functions that link to an internal joint of an object

The link returned by calling one of these functions provides access to the specified joint of the

object, for example, if in an animation we wanted a ball to move to the alien’s right hand in a

game of catch with another alien, we could write the instruction statement:

194

ball.moveTo target: alien.getRightHand

It should be noted that these functions are dependent upon the design in the 3D Model for which

the object is constructed. For example, all Bipeds have the same basic set of joints, as shown in

the X-ray view of the alien and hare in Figure A.9.

Figure A.9 X-ray view of alien and hare internal joints

Although the alien and the hare have the same basic set of Biped joints, the alien also has a set of

finger joints that are particular to the Alien class and the hare has a set of joints in its ears that

are specific to the Hare class. These commonalities and differences are reflected in the

functional methods that get access to an internal joint, as shown in Figure A.10.

195

Figure A.10 Common and specific functional methods for joint access

Getters: Functions that return the dimension values of an object

The term “getter” is used to describe a function that returns the current value of a property. In

Alice the three dimension (width, height, and depth) properties are of special importance and

have their own getter functions. These getter functions for the alien are shown in Figure A.11.

Table A.6 summarizes these functions.

Figure A.11 Functions that return dimension property values

Table A.6 Functions that return dimension values

Function Return type Description

getWidth DecimalNumber Returns the width (left to right

dimension) of this object

getHeight DecimalNumber Returns the height (bottom to top)

dimension of this object

getDepth DecimalNumber Returns the depth (front to back)

dimension of this object

Other functions

Some functions do not neatly fit into the descriptive categories of the preceding paragraphs. We

have collected these functions into a category called “Other.” Other functions are shown in

Figure A.12 and summarized in Table A.7.

196

Figure A.12 Other functional methods

Table A.7 Other functional methods

Function Return type Arguments Description

isFacing Boolean Model Returns true if this object is

facing the other (a 3D Model

object) or else returns false

getDistanceTo DecimalNumber Model Returns the distance from the

center point of this object to

the center point of the other

(a 3D Model object)

getVantagePoint ??? entity TO BE IMPLEMENTED.

Returns the point of view of

this object

isCollidingWith Boolean Model returns true if the bounding

box of this object intersects in

any with the bounding box of

the other (3D Model object),

false otherwise

toString TextString NOTE: THIS DOES NOT

RETURN THE IDENTIFIER

NAME OF THIS OBJECT

IN PROGRAM CODE, but

the internal identifier used by

Alice in the virtual machine

197

Functions for User Input

Functions that ask the user to use the keyboard or mouse to enter a value (of a specific type) are

provided for all objects in an Alice scene. The value entered by the user is returned by the

function, to be stored in a variable or used as an argument in a call to another procedure or

function. Functions for User Input are shown in Figure A.13.

Figure A.13 Functions for User Input

When a user input function is called, at runtime, a dialog box is displayed containing a prompt to

ask the user to enter a value of a specific type. Of course, Alice does not automatically know

what prompt to use in the dialog box. The programmer supplies a prompt that will be displayed.

The prompt is the argument to the function within an instruction statement.

An important part of calling a function to get user input is that the value the user enters is

expected to be of a specific type. For example, the value the user enters when the

getIntegerFromUser function is called must be a whole number, not a number containing a

decimal or a fraction. Likewise, a variable or a parameter that receives the returned value must

be a compatible type with the type of value being returned by the function. For example, if the

user enters a String of alphabetic characters, the String cannot be stored in an Integer variable.

For this reason, Alice will continue to display the user input dialog box until the user enters a

value of the right type.

To each row of Table A.8, we have attached an image depicting a sample dialog box containing

a prompt appropriate as an argument for calling that function.

198

Table A.8 User input Table

Function Return type Argument Description

getBooleanFromUser Boolean TextString Displays the dialog box

with the TextString

argument displayed as the

prompt and True and False

buttons for user input.

getStringFromUser TextString TextString Displays the dialog box with

the TextString argument

displayed as the prompt and

a textbox for user input.

199

getDoubleFromUser DecimalNumber TextString Displays the dialog box

with the TextString

argument displayed as the

prompt and a keypad (with

a decimal point) for user

input.

getIntegerFromUser WholeNumber TextString Displays the dialog box

with the TextString

argument displayed as the

prompt and a keypad for

user input.

PROPERTY METHODS

Setter is a specialized term used to describe a procedure that changes the value of an object’s

property. Getter is a specialized term used to describe a function that returns the current value of

200

an object’s property. Currently in Alice 3, most setters and getters can be found in the Procedures

and Functions tabs of the Methods Panel. (For example, setVehicle is in the Procedures tab, and

getWidth is in the Functions tab.)

Some properties, however, are general purpose in that they are defined for the purpose of

rendering an object in the scene. Getters and setters for these properties are conveniently listed in

the Properties tab of the Methods panel. For example, the alien’s setters and getters are shown in

Figure A.14 and summarized in Table A.9.

Figure A.14 Getters and setters for specialized properties

Table A.9 Setters and Getters for specialized properties

Procedure Argument(s) Description

setPaint paint Sets the paint value of this object to the paint

argument

setOpacity opacity Used to set the transparency of this object by setting

the opacity value of this object using a range of values

from 0.0 (invisible) to 1.0 (fully opaque).

setName name NOTE: THIS DOES NOT CHANGE THE

IDENTIFIER NAME OF THIS OBJECT IN

PROGRAM CODE, but does change the internal

identifier used by Alice for debugging purposes.

Function Return type Description

getPaint paint Returns the paint value of this object

getOpacity DecimalNumber Returns the opacity value in the range of 0.0

(invisible) to 1.0 (fully opaque).of this object

getName TextString NOTE: THIS DOES NOT RETURN THE

IDENTIFIER NAME OF THIS OBJECT IN

201

PROGRAM CODE, but the internal identifier used by

Alice in the virtual machine.

getVehicle Model Returns a link to another object in the scene that is

serving as the vehicle for this object

Methods that can be called on an object’s internal joints

Procedures

As described previously in Chapter 3, almost all 3D model classes in the Gallery have a system

of internal joints. The joints can be thought of as the pivot points of sub-parts of the object and

can be used in the Scene editor to position sub-parts during scene setup. An object's joints are

also objects, and program statements can be written to animate an object’s sub-parts by rotating

and orienting an object's internal joints. Procedures that can be used to animate joints are shown

in Figure A.15.

Figure A.15 Procedural methods for an object's internal joints

These procedures perform the same actions that were described for the entire object, but the

pivot point is at the joint. For example, a statement can be created to tell the alien to turn its right

shoulder joint backward, as shown in Figure A.16. As the right shoulder joint turns, the right

upper arm, lower arm, and hand also turn. That is, the arm parts are attached to the body through

the shoulder joint. For this reason, the arms parts turn when the joint turns.

202

Figure A.16 A statement to turn the alien's right shoulder joint

Notice that the procedures in Figure A.15 do not include methods that move the joint. In Alice 3,

a joint cannot be moved out of its normal position within the skeletal structure of the object’s

body. In other words, a joint and its attached sub-part(s) cannot be separated from the body.

The only unique procedure for joints is setPivotVisible, as described in Table A.10.

Table A.10 Procedure specific to internal joints

Procedure Argument(s) Description

setPivotVisible true or false Displays the pivot position and orientation of this joint

in the animation if the argument is true, hides the pivot

position and orientation of this joint in the animation if

the argument is false

Functions

Almost all functional methods for an entire object are functions that access (return a link to) one

of the joints belonging to that object. However, there are only a few functions that can be called

on an individual joint, as shown in Figure A.17.

Figure A.17 Functional methods for a joint

203

The available functional methods have the same name and perform the same actions as the

functions of the same name for the entire object. Refer back to Table A.7 for the descriptions of

these methods. The only function that is unique to joints is the isPivotVisible function, as

summarized in Table A.11.

Table A.11 A unique function for internal joints

Function Return Type Description

isPivotVisible Boolean Returns true if the pivot position and orientation of

this joint in the animation is being displayed, or else

returns false if the pivot position and orientation of

this joint in the animation is not being displayed

Properties

All of the available getters and setters on the Properties tab/Methods panel of an object’s internal

joints are the same as the getters and setters of the same name for the entire object, as shown in

Figure A.18. Refer to Table A.9 for descriptions of these specialized methods.

Figure A.18 Properties methods for internal joints

METHODS FOR STANDARD OBJECTS

Every Alice project has a scene (this) that is an instance of the Scene class and contains two

other standard objects: the ground or water surface (an instance of the Ground class), and the

204

camera (an instance of the Camera class), as shown in Figure A.19. Each of these objects has

their own procedures, functions, and properties, as defined in their respective classes.

Figure A.19 The standard components of every Alice project

The Scene class has a few procedures, functions and property methods that are exactly the same

as in other classes, as shown in Figures A.20 A.21, and A.22. See previous descriptions of these

procedures (Table A-4), functions (Table A-7), and properties (Table A-9) earlier in this

Appendix.

Figure A.20 Procedural methods in common with other classes

Figure A.21 Functional methods in common with other classes

Figure A.22 Properties methods in common with other classes

The scene is truly the “universe” of an Alice 3 project because it provides the stage, the actors,

and the scenery for animation. For this reason, a scene object has need of many special methods

that perform unique operations for creating the scene and animating the characters in the story or

game. Unique procedures that are used for setting up a scene and managing the animation are

shown in Figure A.23.

205

Figure A.23 Unique procedural methods defined in Scene

The Alice environment automatically calls the performGeneratedSetUp, performCustomSetup,

and initializeEventListeners procedures (in order) when the user clicks on the Run button. The

performGeneratedSetUp procedure contains instructions that were automatically “recorded” as

objects were created and arranged in the Scene editor. When performGeneratedSetUp is

executed, these instructions are used by the Alice system to re-create the scene in the runtime

window. The performCustomSetup procedure contains instructions that may have been written to

adjust the scene in a way not available in the Scene editor. The initializeEventListeners

procedure contains instructions to start listeners for events such as key presses and mouse clicks

while the animation is running. (Specific events and listeners are described below in the Scene

Listeners section.)

After these three procedures are executed, the scene’s myFirstMethod is called and the animation

code in the project is executed. Table A.12 provides further information regarding these unique

procedural methods.

Table A.12 Procedures for this scene

Procedure Argument(s) Description

performCustomSetup Allows the programmer to make adjustments

to the starting scene; adjustments that could

not be easily made in the Scene Editor. Add

program statements to this procedure as is

done in any method in Alice. However, all

statements here will be executed after the

Run… button is clicked, but before the

runtime window is displayed

206

performGeneratedSetup When the Run… button is clicked, Alice

inspects the scene built in the Scene Editor

and generates the appropriate code necessary

to display the scene created by the user in the

runtime window. NOTE: the programmer

should not attempt to add or modify code

in this procedure, as it is always rewritten

whenever the Run… button is clicked.

initializeEventListeners This procedure of the Scene class is the

preferred location in an Alice project for the

implementation of event listeners. When the

Run… button is clicked, Alice inspects this

procedure and generates the appropriate code

necessary to implement the listeners for the

project. See section below on listener

procedures

handleActiveChanged isActive,

activationCount

TO BE IMPLEMENTED

myFirstMethod This is where an Alice animation starts, once

the runtime window is displayed. Normally

this is the method where the programmer

creates program statements that control the

overall execution of the animation. (A

possible exception is performCustomSetUp,

as described above).

This (scene’s) unique properties are shown in Figure A.24.

207

Figure A.24 Properties methods for Scene class

The setters and getters of the Scene class are used to adjust the sky color, the lighting, and the

amount of fog in a scene as an animation program is running, as summarized in Table A.13.

These methods are useful for changing the appearance of the scene while the animation is being

performed (not for setting up the scene in the Scene editor). For example, to change the scene

from a daytime to a nighttime setting, the color of the sky could be made darker and the light in

the scene could be decreased.

Table A.13 Properties setters and getters for Scene class

Procedure Argument(s) Description

setAtmosphereColor color Sets the color of the sky in this scene

setAmbientLightColor color Sets the color of the primary light source in

this scene. Think of it as the color of sunlight

in an outdoor scene

setFogDensity DecimalNumber Used to set the density of the fog in this

scene by setting the density value in the

208

range of values from 0.0 (no fog) to 1.0 (no

visibility of objects within the fog).

setFromAboveLightColor color Sets the color of a secondary light source

from above in this scene

setFromBelowLightColor color Sets the color of a secondary light source

from below in this scene

Function Return Type Description

getAtmosphereColor color Returns the color of the sky in this scene

getAmbientLightColor color Returns the color of the primary light source

in this scene; think of it as the color of

sunlight in an outdoor scene

getFogDensity DecimalNumber Returns the value of the density of the fog in

this scene by getting the density value with a

range of values from 0.0 (no fog) to 1.0 (no

visibility of objects within the fog).

getFromAboveLightColor color Returns the color of a secondary light source

from above in this scene

getFromBelowLightColor color Returns the color of a secondary light source

from below in this scene

addListener procedures

Listeners are used for creating interactive programs, especially games. Interactive means that

the user is expected to use the keyboard, mouse, or some other input device to control the actions

that occur as the program is running.

A listener is an object that, as a program is running, “listens” for a targeted event and responds to

that event when it occurs. For example, a mouse-click on object listener will listen for a user to

mouse-click on an object in the scene. When the mouse-click on an object occurs, we say the

209

“targeted event has been triggered.” When the event is triggered, the listener executes specified

instruction statements in response.

In Alice, to create an interactive program, a Listener object must be added to the scene. A

listener object is added to the scene by calling an addListener procedure, where Listener is a

targeted event. For example, addDefaultModeManipulation creates a listener object that targets a

mouse-click on any object in the scene and responds by allowing the user to drag that object

around the scene while the animation is running.

Figure A.25 shows a list of addListener procedural methods. Table A.14 summarizes details

about the addListener methods, in terms of what event is targeted and how the listener responds.

Figure A.25 addListener procedural methods

Table A.14 addListener target and response

Procedure Argument(s) Description

adddefaultModelManipulation Allows the use the mouse

to reposition an object in

the virtual world as a

210

program is executing.

Ctrl-click turns the object,

shift-click raises and

lowers the object

addSceneActivationListener Scene UNDER

DEVELOPMENT

addKeyPressListener Key responds to keyboard

input from the user. Able

to differentiate between

Letter, Number, and

Arrow keys

addArrowKeyPressListener Key responds to keyboard

input from the user,

specifically for Arrow

keys (UP, DOWN, LEFT,

RIGHT)

addNumberKeyPressListener Key responds to keyboard

input from the user,

specifically for Number

keys (0..9)

addObjectMoverFor Entity The parameter object will

be moved FORWARD,

BACKWARD, LEFT, and

RIGHT, based on its own

orientation, when the user

presses the UP, DOWN,

LEFT, and RIGHT arrow

keys respectively

addPointOfViewChangeListener transformationListener,

shouldListenTo

UNDER

DEVELOPMENT

addCollisionStartListener collisionListener,

Group1, Group2

UNDER

DEVELOPMENT

addCollisionEndListener collisionListener,

Group1, Group2

UNDER

DEVELOPMENT

addProximityEnterListener proximityListener,

Group1, Group2,

distance

UNDER

DEVELOPMENT

addProximityExitListener proximityListener,

Group1, Group2,

UNDER

DEVELOPMENT

211

distance

addOcclusionStartListener occlusionEventListener,

Group1, Group2

UNDER

DEVELOPMENT

addOcclusionEndListener occlusionEventListener,

Group1, Group2

UNDER

DEVELOPMENT

addMouseClickOnScreenListener ??? responds to mouse click

input from the user,

anywhere on the screen

addMouseClickOnObjectListener ??? responds to mouse click

input from the user, on the

specified object

addTimeListener ??? UNDER

DEVELOPMENT

addViewEnterListener ???, ??? UNDER

DEVELOPMENT

addViewExitListener ???, ??? UNDER

DEVELOPMENT

Ground

The Ground class has only a limited number of procedural, functional, and property methods, all

of which behave exactly the same as those defined by other classes. Figures A.26 (procedures),

A.27(functions), and A.28 (specialized property methods) show the methods for the Ground

class. These methods were summarized previously in Tables A.4, A.7, and A9.

Figure A.26 Procedural methods for Ground class

Figure A.27 Functional method for Ground class

212

Figure A.28 Specialized property methods for Ground class

Camera

The camera has many procedural methods that behave exactly the same as those defined by other

classes, as shown in Figure A.29 and summarized previously in Table A.4.

camera procedures

.

Figure A.29 Camera's procedural methods in common with other classes

One of the procedural methods shown above in Figure A.29, is defined only for the camera:

moveAndOrientToAGoodVantagePointOf, as described in Table A.15, below.

213

Table A.15 Unique Procedural method for Camera class

Procedure Argument(s) Description

moveAndOrientToAGoodVantagePointOf entity Animates the reposition and

reorientation of the camera

from its current position to the

vantage point of the entity

The Camera class also has only a limited number of functional, and property methods, all of

which behave exactly the same as those defined by other classes. Figures A.30 and A.31 show

the functional and property methods for the Camera class. These methods were summarized

previously in Tables A.7 and A.9.

Figure A.30 Camera functional methods

Figure A.31 Camera property methods

