
Previous Article
Dynamics of a plantherbivore model with toxininduced functional response
 MBE Home
 This Issue

Next Article
Modeling of mosquitoes with dominant or recessive Transgenes and Allee effects
An agestructured twostrain epidemic model with superinfection
1.  Department of Mathematics, Xinyang Normal University, Xinyang 464000, China, China 
2.  Department of Mathematics, 358 Little Hall, University of Florida, Gainesville, FL 32611, United States 
[1] 
Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems  B, 2013, 18 (1) : 3756. doi: 10.3934/dcdsb.2013.18.37 
[2] 
Junyuan Yang, Yuming Chen, Jiming Liu. Stability analysis of a twostrain epidemic model on complex networks with latency. Discrete & Continuous Dynamical Systems  B, 2016, 21 (8) : 28512866. doi: 10.3934/dcdsb.2016076 
[3] 
Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239259. doi: 10.3934/mbe.2009.6.239 
[4] 
Hao Kang, Qimin Huang, Shigui Ruan. Periodic solutions of an agestructured epidemic model with periodic infection rate. Communications on Pure & Applied Analysis, 2020, 19 (10) : 49554972. doi: 10.3934/cpaa.2020220 
[5] 
Azmy S. Ackleh, Keng Deng, Yixiang Wu. Competitive exclusion and coexistence in a twostrain pathogen model with diffusion. Mathematical Biosciences & Engineering, 2016, 13 (1) : 118. doi: 10.3934/mbe.2016.13.1 
[6] 
Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595607. doi: 10.3934/mbe.2007.4.595 
[7] 
Nitu Kumari, Sumit Kumar, Sandeep Sharma, Fateh Singh, Rana Parshad. Basic reproduction number estimation and forecasting of COVID19: A case study of India, Brazil and Peru. Communications on Pure & Applied Analysis, , () : . doi: 10.3934/cpaa.2021170 
[8] 
Geni Gupur, XueZhi Li. Global stability of an agestructured SIRS epidemic model with vaccination. Discrete & Continuous Dynamical Systems  B, 2004, 4 (3) : 643652. doi: 10.3934/dcdsb.2004.4.643 
[9] 
Tianhui Yang, Ammar Qarariyah, Qigui Yang. The effect of spatial variables on the basic reproduction ratio for a reactiondiffusion epidemic model. Discrete & Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021170 
[10] 
Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 14551474. doi: 10.3934/mbe.2013.10.1455 
[11] 
Jianxin Yang, Zhipeng Qiu, XueZhi Li. Global stability of an agestructured cholera model. Mathematical Biosciences & Engineering, 2014, 11 (3) : 641665. doi: 10.3934/mbe.2014.11.641 
[12] 
Yu Yang, Shigui Ruan, Dongmei Xiao. Global stability of an agestructured virus dynamics model with BeddingtonDeAngelis infection function. Mathematical Biosciences & Engineering, 2015, 12 (4) : 859877. doi: 10.3934/mbe.2015.12.859 
[13] 
Georgi Kapitanov. A double agestructured model of the coinfection of tuberculosis and HIV. Mathematical Biosciences & Engineering, 2015, 12 (1) : 2340. doi: 10.3934/mbe.2015.12.23 
[14] 
Hossein Mohebbi, Azim Aminataei, Cameron J. Browne, Mohammad Reza Razvan. Hopf bifurcation of an agestructured virus infection model. Discrete & Continuous Dynamical Systems  B, 2018, 23 (2) : 861885. doi: 10.3934/dcdsb.2018046 
[15] 
Hisashi Inaba. Mathematical analysis of an agestructured SIR epidemic model with vertical transmission. Discrete & Continuous Dynamical Systems  B, 2006, 6 (1) : 6996. doi: 10.3934/dcdsb.2006.6.69 
[16] 
Xianlong Fu, Zhihua Liu, Pierre Magal. Hopf bifurcation in an agestructured population model with two delays. Communications on Pure & Applied Analysis, 2015, 14 (2) : 657676. doi: 10.3934/cpaa.2015.14.657 
[17] 
Shengqin Xu, Chuncheng Wang, Dejun Fan. Stability and bifurcation in an agestructured model with stocking rate and time delays. Discrete & Continuous Dynamical Systems  B, 2019, 24 (6) : 25352549. doi: 10.3934/dcdsb.2018264 
[18] 
Gerardo Chowell, Catherine E. Ammon, Nicolas W. Hengartner, James M. Hyman. Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland. Mathematical Biosciences & Engineering, 2007, 4 (3) : 457470. doi: 10.3934/mbe.2007.4.457 
[19] 
Ling Xue, Caterina Scoglio. Networklevel reproduction number and extinction threshold for vectorborne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565584. doi: 10.3934/mbe.2015.12.565 
[20] 
ZhongKai Guo, HaiFeng Huo, Hong Xiang. Analysis of an agestructured model for HIVTB coinfection. Discrete & Continuous Dynamical Systems  B, 2021 doi: 10.3934/dcdsb.2021037 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]