Alice 3

How-to Guide
(Part 3 — Working with the Code editor)

Wanda Dann Dennis Cosgrove
Don Slater Dave Culyba
Laura Paoletti Pei Tang

1st Edition Copyright: May, 2012

2" Edition Copyright: September, 2014

This material may not be copied, duplicated, or reproduced in print, photo, electronic, or any
other media without express written permission of the authors and Pearson/Prentice-Hall
publishers.

Cover artwork by Laura Paoletti, 2012.

116

Working with the Code editor

16. Code editor tabs — SCENE ClIASScovueuieiireit ettt et s 118
17. How to work with a class (other than SCENE) ... e e 124
18. How to create program Statements... ..ottt e e e 128
19. How to Cut, Copy, and Paste using the Clipboardccccovveieieieiiininrere e 131
20. How to import and play a sound (QUdio fil€)c.cuveevereierieirce e 134
21. How to export and import @ €lass fil@ ... e 141

117

16. CODE EDITOR TABS — SCENE CLASS

The purpose of this section is to demonstrate the purpose of the default Code editor tabs,
which display the Scene class and two of its procedural methods (initializeEventListeners and
myFirstMethod). For illustration, we will use an African themed scene, as shown in Figure 16.1.
The scene includes a variety of props (grasses, rocks, trees, termite mound, and a pond) as well
as elephant, ostrich, and baby ostrich objects.

Figure 16.1 African scene with elephant, ostrich, and baby ostrich

When a project is first opened in Alice, the Code editor automatically displays three default
tabs, as shown in Figure 16.2. The first tab is the Scene class document tab, which is
accompanied by two procedural method tabs: initializeEventListeners and myFirstMethod. The
Scene’s myFirstMethod tab is automatically selected as the active editor tab. Each of these tabs
is briefly described below.

118

File Edit Project Run Window Help

D> Run..)/ myFirstMethod
declare procedure MY FirstM etho
do in order
l drop statement here

B e U

Figure 16.2 Code editor tabs for the Scene class

Scene class document tab

A class is a document file that defines how to create an instance of a specific type of object.
The Scene class defines how to create a scene for a virtual world. A class document may also
contain definitions for procedures (action methods), functions (computational methods), and
properties (fields — objects or items of data, such as color or opacity). Figure 16.3 shows the
Scene class document tab for the example world used in this section.

119

olamera e oLamera
Cnew ZumaRock)
(new (BaobabTre)|
(new (AcaciaTree)|
Cnew AcaciaTree)
Cnew AcaciaTree)
new (TermiteMound)|

new (Pond) resource: [ZPLIGHT_BLUE] |
new SavanaGrass) resource: % GRASS1) |
(new (SavanaGrass) resource: [GRASST) |
new SavanaGrass) resource: [GRASS1 |
SavanaGrass (new (SavanaGrass) resource: [¥ GRASS2 V]
new Elsphant) resource: [& AFRICAN |
new (Ostrich) resource: [@ DEFAULT] |

(new (OstrichBaby) resource: [§ DEFAULT] |

Figure 16.3 Scene class tab in this example world

120

initializeEventListeners tab

The initializeEventListeners tab displays the current content of the Scene class’
initializeEventListeners procedure, as shown in Figure 16.4. The Scene’s initializeEventListeners
procedure is similar to an Events editor, where listeners for specific events may be created.

To explain listeners and events, let’s use real world analogies. An event is something that
happens. It may be a huge event such as a football game held in an arena or a very small event
such as the blink of an eye or a mouse-click. A listener is an alert that tells Alice to listen for an
event. A listener acts like an alarm clock. When an alarm clock is set, the clock keeps watch
(listens) for a specific time to occur. When the time event occurs, the alarm clock starts a
buzzer or turns on the radio to a selected channel.

Similarly, in interactive computer programs (for example, tutorials and games), we make
use of events and listeners. An event can be things like a mouse click on a button, a key press
on a keyboard, or a touch on the monitor. An event listener keeps watch for the event to occur
and then responds to the event in some way.

By default, the Scene class’ initializeEventListeners tab has one built-in event listener,
named addSceneActivationListener, which tells Alice to listen for a mouse-click on the Run
button. When the Run button is clicked, a runtime window is displayed and the current scene
becomes active. When this event occurs, myFirstMethod is called (executed).

File Edit Project Run Window Help

initializeEventListeners £2

“this| add SceneActivationListener

. declare procedure sceneActivated
do in order

E (this| - myFirstMethod]

Add Event Listener ¥

Figure 16.4 The Scene’s initializeEventListeners tab

Additional event listeners may be created in the initializeEventListeners tab. To add a new
event, click the AddEventListener button. A popup menu is displayed where four different kinds
of event categories are displayed, as shown in Figure 16.5. The event categories are Scene
Activation/Time, Keyboard, Mouse, and Position/Orientation. Each category has several
options of listeners that may be selected. Figures 16.6-16.9 show the event listener options for
each category, one at a time.

121

122

Keyboard
Mouse
Position / Orientation

Figure 16.5 Event listener categories menu

addSceneActivationListener
Mouse > s

Position / Orientation

\EyBoara addKeyPressListener
>
Pilion I Osientalion - addArrowKeyPressListener
addNumberKeyPressListener

addObjectMoverFor €222)

Figure 16.7 Keyboard event listeners

| Add Event Listener ¥

Scene Activation / Time >
>

[this| addMouseClickOnObjectListener
[this| addMouseClickOnScreenListener
[this| addDefaultModelManipulation

wetation >

Figure 16.8 Mouse click event listeners

| Add Event Listener V |

Scene Activation /Time ~ »

Keyboard >

lMouse >

S Cthis addCollisionStartListener £272), £[277) >
Cthis addCollisionEndListener £272), 277 >
Cthis| addProximityEnterListener £222), £722), =722) »
Cthis) addProximityExitListener =222, 5222, =727) 2
Cthis) addViewEnterListener 222 >
[this| addViewExitListener 222 >
[this| addOcclusionStartListener £227), 52272 >
[this| addOcclusionEndListener £222), £227) >
E:| addPointOfViewChangeListener E”’I >

Figure 16.9 Position and Orientation event listeners

As an example of adding an event listener, suppose we want to allow the user to move
objects around in the scene. As shown in Figure 16.10, select the Mouse event listener category
and then addDefaultModelManipulation in the cascading menu.

(Add Event Listener ¥]

Scene Activation / Time >
>

[:tEsl addMouseClickOnObjectListener
this| addMouseClickOnScreenListener
EiEs] addDefaultModelManipulation

osition / Orientation >

Figure 16.10 Example--Select Mouse/addDefaultModelManipulation listener

The resulting event listener can be seen in Figure 16.11. This event listener watches for a
mouse click-and drag action. Any object within the scene can be pulled around the scene as the
animation is running. For example, the mouse could be used to move the elephant around in
the scene shown in Figure 16.11.

123

File Edit Project Run Window Help

(v initializeEventListeners 52

do in order
| Chis| myFirstMethod |

B e O

Figure 16.10 addDefaultModelManipulation event listener code

myFirstMethod tab

The myFirstMethod tab is where program you will likely create program statements that
you expect to be performed when the Run button is clicked. Built into myFirstMethod is a first
line of code (do in order), as shown in Figure 16.11. Do in order is a control statement that tells
Alice to perform any statements in myFirstMethod in the order in which they listed (one at a
time, one after the other). In the example shown in Figure 16.11 no further program
statements have yet been added to myFirstMethod.

File Edit Project Run Window Help

(v myFirstMethod

Wm’emy Irstivietno
do in order

l drop statement here

Figure 16.11 The Scene’s myFirstMethod tab

124

17. HOW TO WORK WITH A CLASS (OTHER THAN SCENE)

As illustrated in Section 16 above, the default class in the Code editor is the Scene class.
What if you want to create program code for a different class? For example, suppose you want
to write code for the Elephant class to teach an elephant object how to flap its ears.

Open a Class tab (in addition to the default Scene tab)

As previously described in Part 1, Section 5 of this How-To guide, a Class tree menu button
is provided (just to the left of the Scene class tab). For your convenience, selecting a class is
illustrated again in Figure 17.1. Click on the class name in the tree and also in the cascading
menu. In this example, the Elephant class is selected and Alice responds by opening the
Elephant class tab in the editor, as shown in Figure 17.2. You may notice that the Scene class
and associated procedure tabs are still available in the editor, but the Elephant class tab is also
now displayed as an editor tab.

myFirstMethod

classes thod
| Scene) (19) 4
(Prop > 5@\ add detail |

(ZumaRock) >

(BaobabTree) >

(AcaciaTree) >

| TermiteMound)~ »

(Pond) >

(SavanaGrass (1 »

Elephant Elephant
(Flyer) » | @® Add Elephant Procedure...
@ Add Elephant Function...
@ Add Elephant Property...

(Ostrich) >
(OstrichBaby) >

m

Figure 17.1 Selecting a class from the class tree menu

125

File Edit Project Run Window Help

=

selected type:(Elephant) D> Run.. {:}v Elephantx‘
class Elephant) extends | Quadruped

V procedures

| ® Add Elephant Procedure... |

¥V functions
@ backto: [l 4 Scene) J

@ Add Elephant Funcion..
type hierarchy

{ Scene) ML
v (Prop) @ Add Elephant Properly.. |
\Pond)
('savanaGrass)

(TavErT T
¥ (Quadruped)

¥ (Flyer

|

{ Ostrich
{ OstrichBaby)

Figure 17.2 Elephant class is now actively displayed

Open a new method (procedure or function) tab

Now that the Elephant class tab is displayed, tabs can be opened for an existing Elephant
class method (procedures and functions) or new methods may be created. Also, existing
properties can be edited or new properties created. As an example, we will illustrate creating a
new procedure. As shown in Figure 17.3, we clicked the AddElephantProcedure button. When
the add procedure button is clicked, a dialog box pops up where the name of new procedure
may be entered. In Figure 17.3, we entered the name flapEars.

Elephant *

class Elephant) extends | Quadruped

¥ procedures
@ Add Elephant Procedure...

¥ fun lE’J\ ﬂ

® A
preview: declare procedure ﬂapEars
V¥ pro,

@ Cancel

126

Figure 17.3 Elephant class is now actively displayed

After a name for the new procedure has been entered and the OK button is clicked, Alice
opens a new tab for the new procedure, as shown in Figure 17.4. Code statements can be
created in this tab to provide animation instructions for flapping an elephant’s ears.

-ﬂapEarszz [

declare procedure flapEars | Add Parameter... |
'do in order

I drop statement here

Figure 17.4 flapEars procedure tab is now active

Ordering of tabs in the Code editor

Look closely at the positioning of the tabs for classes and procedures in Figure 17.5, above.
Tabs in the Code editor are always arranged such that a Class tab is immediately followed by
method tab(s) for procedures and functions defined by that Class, as illustrated in Figure 18.4.
The Scene class tabs are open by default. A newly opened class is always opened to the right of
the Scene class’s tabs.

e | Vg r 1S W/ r v
~ ~ N ~ b 4
/, ,, ,/ ,/ ,/
ClassA ,/ e ClassB 2 7 -
’ ,
rocedure ’ procedure1 ,/ ’,
P % function2 7

’
procedure2 procedure3

Figure 17.5 Order: Class tab is followed by its procedure & function tabs

Closing a tab

127

To close a tab, click on the X in the upper right of the tab, as shown in Figure 17.6. A
Class document tab cannot be closed until all its procedure & function tabs have been closed.

initializeEventListenefs 2 §

(- this| add SceneActivationListener

deciare procedure SCeneActivated Click here to
e close tab

 (this] myFirstMethod

Add Event Listener ¥

Figure 17.6 How to close an editor tab

128

18. HOW TO CREATE PROGRAM STATEMENTS

The important thing to know about the Code editor is: this is where you create your
program statements. Also, when the Run button is clicked, the program statements in this
scene’s myFirstMethod will be performed. So, to illustrate how to create a program statement,

we will create statements in myFirstMethod.

Drag and drop a program statement

In our example scene, the baby ostrich is only a few hours old and is just getting her first
look at the world around her. Let’s create a statement to have the baby ostrich spin all the way
around (one complete revolution). First, select the babyOstrich object in the object menu, as

shown in Figure 18.6.

File Edit Project Run Window Help

Cground group by category | ¥
‘ Ccamera €]
lomSetup
‘ (zumaRock e
? ChaobabTree) lod
,% CacaciaTreg|

% CacaciaTreed
m CacaciaTree3
‘ CtermiteMound

o= I

. . re: £229)

%. (savanaGrass|
oy

% (savanaGrass2) j
Wiy SEEETESES

% (savanaGrass3
!

e
w (savanaGrass4|

w Celephant S

Color color: 222

Color color: £292)

dy Costrich >
ostrichBab >

)/

deciare procedure myFirstM ethod

myFirstMethod

Figure 18.6 Select ostrichBaby object

do in order

[drop statement here

129

Make sure that ostrichBaby is the selected object and then select the turn tile in the
Procedures panel. Use the mouse to drag the turn tile into the editor tab, as shown in Figure

18.7

File Edit Project Run Window Help

" |Seene R e

& ostrichBaby

Procedures

~ CostrichBaby move direction: [£229) mount

CostrichBaby moveToward targdf: , amount: £292)

 CostrichBabyl moveAwayFrg § target: , amount: £299)

 CostrichBaby moveTo ta

 CostrichBaby place alRelation: £292) , target:
—

% turn direction: ,| amount:

- CostrichBaby roll direction: 222] , amount =222

n

declare procedure myFirstM ethod
do in order

2 CostrichBaby turn | direction: E999) , amount =997

Figure 18.7 Select ostrichBaby object

When the tile is dropped into the editor, a menu pops up where the direction and the
amount of the turn can be specified. In this example, we chose turn left 1.0 revolution, as
shown in Figure 18.8. The resulting statement is shown in Figure 18.9.

130

Run

declare procedure mYyFirstM ethod

'do in order

LLEFT]
CRIGHT!

CFORWARD)
[CBACKWARD|

Custom DecimalNumber...

Figure 18.8 Select direction and amount

declare procedure mYyFirstM ethod

'do in order
| CostrichBaby ~ turn [CLEFT) , 51.0 add detail

Figure 18.9 Completed statement

One of the features of Alice is the program code can be run and tested without first having

to write dozens of lines of code and compiling a complete project. Just click on the Run button
to view the animation created when your program. A runtime window is displayed where the
animation can be viewed, as shown in Figure 18.10. To view the animation again, just click the
Restart button in the runtime window.

131

File Edit Project Run Window Help

P> Ru -

myFirstMethod

|l—-¢'-v—

W | speed: 1xQr

& ostrichBaby

Procedures

A
position
. CostrichBaby move direction: ££222) , amount: =727
moveToward target €222) , amount =222)
moveAwayFrom target €2%2) , amount =222
ostichBab moveTo arget 779 |
 CostrichBaby place spatialRelation: €29, target (729)

q

ﬁ:(ostrichBabj turn direction: £2%%) , amount £229)
roll direction: 22%) , amount E222)

: l
turnToFace target (272)

Figure 18.10 Click on Run to view runtime window

132

19. How 10 CuT, CoPY, AND PASTE USING THE CLIPBOARD

The purpose of this section is to demonstrate using the clipboard to perform cut, copy, and
paste in a drag-and-drop Code editor. Cut, Copy, and Paste items appear in the Edit menu, as
shown in Figure 19.1. However, these items are placeholders...allowing for possible future
implementation.

E————J——mm |
R

g:r:ﬂé declare procedure myFirstM ethod
i+

Ctrl+V

do in order

~ dotogether

| CostrichBaby turn [LEFT] , 51.0) , duration 520/ add detail]
Costrich say JNice pirouette!} , duration Ezj add detail }

- = ; 3
LR
S |, 4 Setup Scene

Figure 19.1 Edit options in the Menu bar

Actually, the traditional cut, copy, and paste actions are useful in a text-based editor but
are of limited use in a drag-and-drop editor. In Alice, a clipboard is far more useful as a way
to store a single graphic tile (one statement) or a block of graphic tiles (multiple statements)
for cut, copy, and paste actions.

Cut

To cut, use the mouse to drag a single graphic tile or a block of graphic tiles into the
clipboard, as shown in Figure 19.2. In the example shown here, an entire do together block is
dragged to the clipboard.

| File Edit Project Run Window Help

do in order

 CostrichBaby* turn [LEFT] ", 51.0/', duration 52.0/ add detail]
: say .duraﬁoné’z:ﬂ] add detail]

II édostrich

Figure 19.2 Drag code to cut to the clipboard

133

By default, when the mouse is released, the clipboard turns white and the block of tiles is
erased from the editor, as shown in Figure 19.3. In other words, the default clipboard action is
cut.

myFirstMetnod

declare procedure mYyFirstM ethod

do in order

o st _—_‘-"—'—’—-—(;ode is now stored
Code is cut from here "e’—"’" . :
in the clipboard

Figure 19.3 Cut removes selected code tiles

Paste (and remove)

Once code has been stored on the clipboard, it can be pasted into any open tab in the Code
editor. In this example shown in Figure 19.4, we dragged the code from the clipboard back into
myFirstMethod, but it could have been pasted onto any tab in the editor. Note, in Figure 19.4,
the color of the clipboard has returned to its usual brown. By default, dragging a graphic tile out
of the clipboard removes the tile from the clipboard. In this example, the clipboard is now
empty.

myFirstMethod i

: '
declare procedure myFirstM ethod -
do in order - __'_'i—'— ,
"~ do together — —_‘——’ - .
[55 CostrichBaby turn CLEFT) , 510, duration 520 add detail | # - Remove from Cl|pb0ard and
: [Costrich| " say SfNice pirouette!i , duration 52.0 add detail] paSte baCk |nt0 edltor-

Figure 19.4 Paste the code from the clipboard into the editor

Copy
To copy code (instead of cutting), press and hold the Ctrl key (the Option key on Mac) while

using the mouse to drag the code into the clipboard, as shown in Figure 19.5.

Hint: release the Ctrl (OPTION) key only after releasing the mouse button.

134

myFirstMethod

dectare procedure myFirstMethod
do in order o s o

fogether wem mem s ST
gw.ala'by] turn [LEFT| ", 1.0, duration 52.0]° add detail } A Copy Of the
ostrich say SfNice pirouette! , duration 52.0] add detail J code IS NOW IN the
clipboard.

Code is still here.

Figure 19.5 Drag with Ctrl key (Option key on Mac) held down to copy to clipboard

Paste (no remove)

To paste without removing the code from the clipboard, press and held the Ctrl (Option on
the Mac) key while dragging from the clipboard into the editor, as shown in Figure 19.6. Note
that the color of the clipboard has remained white. This means the clipboard still holds a copy
of the tile, allowing it to be pasted more than once.

(v myFirstMethod . ﬂ
declare procedure myFirstM ethod _‘!o’

do in order
- do together | ","
-
* CostrichBaby " turn [LEFT] , 51.0/', duration 52.0/ add detail } ,4,”

strich| say SfNice pirouefte!] ', duration 52.0) add detail J

Figure 19.6 Paste with Ctrl (Option on Mac) to copy from clipboard to the code

editor

Note: Cut, copy, and paste actions can result in scope errors. In the examples used here, we
worked with myFirstMethod and encounter methods -- both of which belong to the Scene class.
Because this scene contains all other objects in the virtual world (in this example, the dolphin
and seaPlant1), we had no scope errors.

We wish to caution the reader, however, that if code is cut or copied from a method
belonging to one class and then pasted into a method belonging to a different class, a scope
error may occur. This is not unique to Alice. This is standard protocol for scope-enabled
programming languages, whether working in a text editor or a drag-and-drop editor.

135

20. HOW TO IMPORT AND PLAY A SOUND (AUDIO FILE)

The purpose of this section is to demonstrate how to import and use audio files for creating
sound effects in an Alice 3 animation.

Import with Resource Manager

One way to import a sound is to use the Resource Manager. The Resource Manager was
previously introduced in Part 1, Section 3 of this How-To guide. Also, an example of using the
Resource Manager to import a 2D image as a billboard was provided in Part 2, Section 6. In this
section, the Resource Manager will be used to import an audio file which can then be used to
play sounds in an animation program. In the Project menu, select Resource Manager, as shown
in Figure 20.1. A Resource Manager dialog box is displayed, where you can select the Import
Audio button.

File Edit J&{{J{=8 Run Window Help

Resource Manager...

Find... Ctri+F P> Run... [
\

Statistics... Ctrl+T

v ’ r

(

O c— .J‘AEJ

| type | is referenced? [Import Audio...
Importimage...

Figure 20.1Paste with Ctrl (Option on Mac) to copy from clipboard to the code editor

When the Import Audio button is clicked, a navigation window is displayed containing a
Sound Gallery. The Sound Gallery is a collection of audio files, especially constructed for use in
Alice projects. The audio files in the Alice Sound Gallery are freely provided for use in non-

136

commercial, educational projects. Please note, however, that the audio files are copyrighted
and may not be used for commercial purposes without prior written permission from Carnegie
Mellon University.

You may browse the audio files in the Sound Gallery and select an appropriate audio file for
import. In the example shown in Figure 20.2, we selected drumroll_finish.mp3.

Look in: soundGallery v 07 °Ov

-

Name

-~ Background Music
’laces . Musical Cues

Sound Effects §

r
= \
top \\‘
Musical Cues v &
Name < #

2| anticipate.mp3

2| bad_joke.mp3

2| continuous_drumroll.mp3
L-!'.v' drumroll_finish.mp3 l
2 emphasize.mp3

W Aavnantatinn man2

Figure 20.2 Select an audio file for import

The imported audio file is then listed in the Resource Manager, as shown in Figure 20.3.
Because the file in this example has just now been imported, it is not yet being used in the
program code and the Resource Manager indicates that “is referenced?” is NO.

name | type | is referenced? ['fimportAudio.
Ldrumroll_ﬁnish.mp3 Audio NO I —
= | ImportImage...

Remove

137

Figure 20.3 Imported file is listed in the Resource Manager

Play an audio file

Sound effects in Alice animations are created by playing an audio file. To play an audio file,
drag a playAudio tile into the editor, as shown in Figure 20.4. In this example, we dragged this
(the current scene’s) playAudio tile into the editor. When the tile is released in the editor, a
popup menu offers the option of selecting an audio file that has already been imported into the
Resource Manager or to import a different audio file.

s

N xR
(89 « x Setup Scene

group by category

's Editable Procedures (3)
|| edit | Cthis] performCuslomSelup]
| edit | Cthis| initializeEventListeners]

| edit | Cihis| myFirstMethod

4
4
4
&
4
4
’0
g

 (this setAtmosphereColor color: £222)
- (this setFromAboveLightColor colo
- (this setFromBelowLightColor ¢
 (this setFogDensity density:

audio
 (this| playAudio audioSolrce: 222

myFirstMethod
declare procedure myFirstM ethod

do in order

strichBaby ~ turn [LEFT] E"@ , duration 52:] add detail }

- Costrich| " say SfNice piroueitel , duration 52.0/ add detail]

new (AudioSource) [drumroll_finish.mp3 (< 02s) |
‘Import Audio...

Figure 20.4 Creating a playAudio statement

As shown in Figure 20.5, the playAudio statement in this example was positioned
immediately after the do together code block where the baby ostrich turns one revolution and

the mother ostrich says “Nice pirouette!”

138

declare procedure myFirstM ethod
do in order
f dotogether

: { CostrichBaby turn [LEFT| , 1.0/ , duration 52.0/ add detail ’

{ Costricn| - say fNice pirouette!i ", duration 52.0 add detail ‘

[(this) playAudio [new (AudioSource) Cdrumroll_finish.mp3 (< 025) | ’

Figure 20.5 Complete playAudio statement

Modifying sound effects

In the example shown above, the sound is playing in a spot that isn’t really appropriate for
the context and sequence. It would be much better if the drumroll were played prior to the do
together code block, or perhaps even within the do together. To modify where a sound is
played during the animation sequence, just use the mouse to click-and-drag the statement to a
different place in the code sequence, as shown in Figure 20.6.

declare procedure mYyFirstM ethod

'do in order

this] 4 playAudio [“new (AudioSource) Cdrumroll_finish.mp3 (£.025) |]
t $

er

KostichBaby turn CLEFT] , 1.0, , duration 52.0/ add detail ‘
] J

b Costrich| " say T'Nice piroueite!’] , duration 2.0/ add detail |

¥+
4 4
+

Figure 20.6 Changing sequence for playing a sound

When playing a sound, we often want to shorten the length of time it plays. For instance, in
this example the drumroll is 4.02 seconds. This may seem to be a short time, but is actually
much too long for this animation. To play only a portion of the sound, we can customize the
start and stop points for playing the sound. Click the arrow at the end of the playAudio
statement and then use the slides to select a start time and a stop time for a shorter length of
time, as shown in Figure 20.7. In this example, the start was set at 1.0 and the stop at 0.0703 on
the audio timer. As a result, the sound will now play for 1.5 seconds.

139

declare procedure myFirstM ethod

'do in order I
this| playAudio gnew AudioSource) [_drumroll_finish.mp3 M\
{ do together
‘ostrichBabyi new { AudioSource) [_drumroll_finish.mp3 | (currentvalue)
f ostrich say new (AudioSource) [“drumroll_finish.mp3

preview: [new (AudioSource) [drumroll_finish.mp3 51,0, 50.0763, =15
resource: [_drumroll_finish.mp3]
- 0
volume:):— (1.0)
— 00
start marker: <O
d Q
| test |
OK || cancel |

Figure 20.7 Customizing to play a shorter segment of the audio file

Suggestions for using and editing audio files

Alice is not sound/audio recording studio software. Other applications are available
online that performs these actions far better than our resources can suuport. For creating your
own recordings, you might consider software such as GarageBand (Apple, Inc.) or Mixcraft 6
(Acoustica) which are not free but are reasonably priced and have user’s guides.

For purposes of editing existing audio files, we use and recommend Audacity, free
software from Carnegie Mellon University, see:

http://www.cmu.edu/computing/software/all/audacity/

Audacity is highly effective as a tool for extracting and exporting a short audio clip for use in Alice 3. Use
of a shorter audio clip can dramatically decrease the size of an Alice project and also helps adhering to
the guidelines for educational “fair use.” In any case, we strongly recommend that you observe
copyright laws. Of particular importance is the need to guard against redistribution of any copyrighted
media.

140

21. HOW TO EXPORT AND IMPORT A CLASS FILE

Video: Exporting and Importing a Class File

‘The purpose of this section is to demonstrate how to reuse Class code by exporting code
written for a Class in an Alice project and then (later) importing that file in a different Alice
project.

Export
To export code written for a Class in an Alice project, follow these steps:

Step 1: Open the class you wish to export. In the example shown in Figure 21.1, the Ostrich

class is selected in the Class menu.
7 Soene s

classes thod

(Program) 2 >

(| Scene) (19 >

(Prop) >
{ ZumaRock) >
(BaobabTree) >
(AcaciaTree) >
{ TermiteMound) >
{Pond) (1) >
(SavanaGrass) »

{ Quadruped) >
(Elephant) >

(Fiyer) >

File Edit Project Run Window Help

group by category | ¥

‘s Editable Procedures (4)

| edit | Cthis| performCustom Setup]

| edit | Cthig| initializeEventListeners]
| edit | Ctis| handleActiveChanged isActive: I.222) , activati (Ostrich) 1) >
|| edit | Cthis| myFirstMethod

Figure 21.1 Select a class in Class tab
When a class is selected, the tab for that class should become the active tab in the Edit

panel, as shown in Figure 21.2.

141

File Edit Project Run Window Help

selected type:(Ostrich) l D Run ‘ <:\/v ‘m i
= b |
class Ostrich extends Flyer [= @) Addfrom Class File... J [&) saveto Class File... j
¥ procedures
() [walk
@ Add Ostrich Procedure...
{ @ backto: {4 Scene) T —
Rpelhierarcy — @ Add Ostrich Function...
{ Program)
Yistene ¥ properties
¥ { Prop @ Add Ostrich Property...
{ ZumaRock)

Figure 21.2 The Ostrich class is the active tab in the Edit panel

Step 2: In this example, we have defined a walk procedure for the Ostrich class. To save this

code for use with Ostrich objects in another project, click the Save to Class File button. A save
file dialog box is displayed, as shown in Figure 21.3.

File Edit Project Run Window Help

selected type:(Ostrich)

(v

class | Ostrich | extends | Flyer)

Ostrich

[= @) Addfrom Class File... “[=) saveto Class File... m

¥ procedures
v) iwalk
@ Add Ostrich Procedure...
backto: [¢ Scene) =
{ s = ¥ functions
type hierarchy @ Add Ostrich Function...
(Program)
(Scene ¥ properties
¥ { Prop @ Add Ostrich Property...
{ ZumaRock)

Figure 21.3 Click the Save to Class File button

Alice automatically creates a MyClasses folder where class files can be saved. Save the file.

Note: We recommend that you save the file in MyClasses, but you may select another location
on your computer for storing the file. You do not need to enter the filename extension; Alice
automatically adds .a3c as the file format.

142

[weases | 3] noom

Date modified

Figure 21.4 Save the class file

If the class file has been successfully saved in the MyClasses directory, it should appear in the
Gallery tab labeled My Classes, as shown in Figure 21.5.

143

Eile Edit Project Run Window Help

[‘ Starting Camera View d

s

new Bunny() new Ogre(_) new Ostrich(_) new TextModel() from ScoreKeeper.a3c

Figure 21.5 Exported classes in the My Classes directory

Import

To illustrate how to import previously exported code, we will build upon the Ostrich export
example described above. We are assuming the Ostrich class, with the walk procedure, has
been exported. Sometime later, we create a new Alice project that has an Ostrich object, as
shown in Figure 21.6.

144

File Edit Project Run Window Help

)/

declare procedure myFirstM ethod
do in order

l drop statement here ‘

myFirstMethod

.

LR]
« » Setup Scene

- B

e ——

U # ostrich

Procedures

group by category | ¥
‘s Editable Procedures (1)

edit | Costrich setOstrichResource ostrichResource: 222)

‘s Editable Procedures (0)

Figure 21.6 A different project with an ostrich object

Step 1. Select the class in the Class menu. You should see the tab for that class as the active tab
in the Edit panel, as shown in Figure 21.7. In this example, the ostrich object was added to the
scene using the Ostrich class in the Flyer Gallery. The Ostrich class in the Flyer Gallery does not
have a walk procedure. (This is not unique -- none of the Flyer classes have a pre-defined walk

procedure.)

File Edit Project Run Window Help

selected type:(Ostich) P Run..)/ strich
class Ostrich | extends | Flyer)
¥ procedures

@ Add Ostrich Procedure... |

@ vackto: [H 44 scene) ¥ functions

| ® Add Ostrich Function... |

type hierarchy

¥ properties

@ Add Ostrich Property...

JapaneseCypress n
RockyOutcrop
Bamboo

o
3
a
B
3

|

Figure 21.7 No walk procedure
Step 2. Click the Add from Class File button in the Class tab, as shown in Figure 21.8.

145

selected type:{ Ostrich)

class Ostrich extends Flyer l &= @ Add from Class File... J[{5 saveto Class File...

'Y procedures

@ Add Ostrich Procedure...

V¥ functions

‘ @backto: &‘,A‘,;\(Scene)

| @ Add Ostrich Function... |

/pe hierarchy
(Program) ¥ properties

(Scene @ Add Ostrich Property...
r(Prop)

Facaoo\

Figure 21.8 Click the Add from Class File button

A Save File dialog box is displayed, as illustrated in Figure 21.9. In this example,
we clicked on Ostrich.a3c and then the Open button.

Look in: I | MyClasses j s cF Ev
Pt Name ‘ Date modified Type
o "ﬁ Bunny.a3c 9/23/2013 1:26 PM A3C Fil
t
ecentriaces Ogre.a3c 8/30/201310:15AM A3CFil
= 9/29/20141:35PM ASCFil
Desl&op | ScoreKeeper.a3c 7/22/2014 1:59 PM A3CFil
=, TimeKeeper.a3c 7/22/2014 2:06 PM A3CFil
ww
Libraries
Computer
@
Network
< 1] | »
File name: I ﬂ Open
Files oftype: IAII Files (*.) LI Cancel
2

Figure 21.9 Select the desired class file and open it

A Class file content dialog box is displayed, where you can select the procedures, functions, or
properties you wish to import. In the example shown in Figure 21.10, we selected the walk
procedure and then clicked the Next button.

| class { Ostrich)

procedures
| from Ostrich.a3c: | already in project: end result:
|[] o walk ||

< Back [Next>J Finish Cancel

146

Figure 21.10 Select the class content to be imported

A Merge dialog box is displayed, as shown in Figure 21.11. If any conflicts exist between code
already in the project and the code to be imported, this dialog box will provide options for
selecting which version you wish to keep. If you wish to keep more than one version, the
versions can be renamed to avoid name conflicts. When conflicts, if any, have been resolved,
click the Finish button.

class (Ostich)

Figure 21.11 Click Finish

Imported class file content will now be listed in the Class tab, as shown in Figure 21.12.

File Edit Project Run Window Help

selected type:(Ostrich)

O Ostrich
class extends (Flyer) [#=@) Add from Class File...]rs Save to Class File... ||

| e (o) | I

Yype hierarchy - _® Adg Ostricn Functon..

@
{ ZumaRock) “

Figure 21.12 Import is complete
A detailed tutorial for Export and Import is available as a Video at

http://www.alice.org/3.1/materials_videos.php

147

