
147	

	

Alice 3
How-to Guide
(Part 4 - Events)

Wanda Dann Dennis Cosgrove
Don Slater Dave Culyba
Laura Paoletti Pei Tang

1st Edition: Copyright May, 2012
2nd Edition: Copyright September, 2014

This	
 material	
 may	
 not	
 be	
 copied,	
 duplicated,	
 or	
 reproduced	
 in	
 print,	
 photo,	
 electronic,	
 or	
 any	

other	
 media	
 without	
 express	
 written	
 permission	
 of	
 the	
 authors	
 and	
 publisher.	

Cover artwork by Laura Paoletti, 2012.

149	

	

Events for Interactive and Game Programming

22.	
 Scene	
 Activation/Time	
 Events	
 ………………………………………………………………………………………	
 150	

23.	
 Keyboard	
 Events	
 ……………………………………………………………………………………….	
 153	

24.	
 Mouse	
 Events	
 ……………………………………………………………………………………………	
 157	

25.	
 Position/Orientation	
 Events	
 ……………………………………………………………………..	
 	
 162

Video: Events	

EVENTS FOR INTERACTIVE & GAME PROGRAMMING

The Scene class defines a procedure named initializeEventListeners, as shown in Figure IV.1.
The initializeEventListeners is similar to an Events editor, where listeners for specific events
may be created. An overview of the initializeEventListeners procedure was provided in Part 3,
Section 16 of this guide. You may wish to review Part 3, Section 16 as it provides a “surface”
description of listeners and events, appropriate for interactive programming. For those want a
more in-depth look at events and listeners, this section explores events and listener options from
the perspective of game programming.

By default, the Scene class’ initializeEventListeners tab has one built-in event listener,
addSceneActivationListener, that tells Alice to listen for a mouse-click on the Run button event. “In
the event that” the Run button is clicked, a runtime window is displayed and the current scene
becomes active. When this event occurs, myFirstMethod is called (executed).

Figure IV.1 The Scene’s initializeEventListeners tab
Additional event listeners may be created in the initializeEventListeners tab. To add a new event,

click the Add Event Listener button. A popup menu displays four different categories of
events, as shown in Figure IV.2. The event categories are Scene Activation/Time,
Keyboard, Mouse, and Position/Orientation.

Figure IV.2 Event categories menu

151	

	

Chapter 22: Scene Activation/Time Events
The Scene Activation/Time category has two menu options, as shown in Figure 22.1.

Figure 22.1 Scene Activation/Time listener menu options
Scene Activation

If addSceneActivationListener is selected, another sceneActivated listener is added to
the editor, as shown in Figure 22.2. In this example, a statement was created in the second
sceneActivated listener to play a footsteps_walking audio file. Now, when the Run button is
clicked, both sceneActivated listeners will “fire” simultaneously. As a result, myFirstMethod will
start to execute and the footsteps_walking audio file will start to play at the same time.

Figure 22.2 Two sceneActivated listeners, each with their own action
Time

If addTimeListener is selected, a menu cascades to select a time interval, as shown in
Figure 22.3. In this example, a time interval of 0.25 seconds was selected and a statement was
created in the timeListener to play a footsteps_walking audio file. Now, when the Run button is
clicked, myFirstMethod will start running and after 0.25 seconds has elapsed, the footsteps_walking
audio file will start playing.

Figure 22.3 Time event listener
Single vs. Multiple Events
 The sceneActivated and timeElapsed listeners expect an event to occur only once.
That is, for the sceneActivated listener it is expected that the user will click on the Run button
only once (to start the execution of the program). Likewise, for the timeElapsed listener it is
expected the time interval will elapse and the action will occur just once.

 Of course, sometimes you may expect that an event may occur several times while a
program is running. To handle events that may occur multiple times, Alice provides a multiple
event policy option. To set the multiple event policy, clicking on the add detail button in the
listener header’s signature heading and select one of the menu options, as shown in Figure 22.4.

153	

	

Figure 22.4 Multiple event policy menu
• IGNORE – just do the action once (default setting).

• ENQUEUE – repeat the action each time the event occurs, in succession (wait for the
previous action to finish before doing it again)

• COMBINE – repeat the action each time the event occurs, concurrently (don’t wait for
the previous action to finish)

As an example, suppose ENQUEUE is selected for the timeElapsed listener, as shown in
Figure 22.5. Now, when the Run button is clicked, Alice will wait 0.25 seconds and then play the
footsteps_walking audio until the audio is finished, wait another 0.25 seconds and then play the
audio again, … and repeat this action again and again until the program ends.

Figure 22.5 ENQUEUE option for timeElapsed listener

Chapter 23: Keyboard Events

Video: Keyboard Events
The Keyboard category has four menu options, as shown in Figure 23.1. The first three

options (addKeyPressListener, addArrowKeyPress and addNumberKeyPress)
listeners all work in the same way. The illustration shown here is for KeyPressListener but
can be applied to any one of the three.

Figure 23.1Keyboard event listeners
KeyPress

When addKeyPressListener is selected, a keyPressed listener is added to the editor, as
shown in Figure 23.3.

Figure 23.3Keyboard event listener

The keyPressed listener has four functions on the event (e) that may be used within its code
block to retrieve information about which key was pressed:

• e.isLetter returns a boolean value that is true if the key pressed is a letter of the alphabet
and false, otherwise.

• e.isDigit returns a boolean value that is true if the key pressed is a digit (0 – 9) and false,
otherwise.

• e.getKey returns a Char value representing the key pressed

155	

	

• e.isKey (key) returns a boolean value that is true if the key press is equal to the key
argument

For example, in Figure 23.4 an If statement has been added to the keyPressed listener that
calls e.isKey with the letter ‘L’ as the argument. If the user has pressed a key and the key is ‘L’, the
elephant will turn left 0.25 revolutions.

Figure 23.4 Using the isKey function within a keyPressed listener
As a more generic example, in Figure 23.5 an If statement has been added to the keyPressed

listener that calls e.isLetter. Additional If statements are nested within, to check whether the letter
is ‘J’ or ‘K’. If the letter is J, the elephant will move left 1 meter. Else, if the letter is K, the
elephant will move right 1 meter. If some other letter or key is pressed, no action is taken.

Figure 23.5 Using multiple functions within a keyPressed listener

Held key policy

Keyboard events are geared to work with a single key press, but if you expect that the user
may want to hold down a key, it is possible to set the heldKeyPolicy to control how the event is
handled, as shown in Figure 23.6.

Figure 23.6 Selecting a heldKeyPolicy

• FIRE_MULTIPLE – repeatedly perform the action until the key is released

• FIRE_ONCE_ON_PRESS – when the key is first pressed down, perform the action
once only (default setting)

• FIRE_ONCE_ON_RELEASE – the the key is released, perform the action once only

In practice, most programmers set either a held key policy or a multiple event policy – but
not both. It is possible, however, to set choices for both policies for the same event. Predicting
the behavior takes a bit of logic, but here is an example:

Let’s say you have selected FIRE_MULTIPLE as the heldKeyPolicy and ENQUEUE as
the multipleEventPolicy. When the user holds down a key, Alice will queue up the events
and fire one after another until all the actions are eventually performed (which might cause
events to fire long after the user stops holding down the key).

Object Mover

The fourth option for Keyboard events is addObjectMoverFor. When this option is
selected, an addObjectMoverFor listener is added to the editor, as shown in Figure 23.7.
In this example, the elephant was selected as the object to be controlled using arrow key
presses. When the user clicks an arrow key, the elephant object will move in the direction the
arrow points (Forward, Backward, Right, and Left). The FIRE_MULTIPLE heldKeyPolicy
is automatically in effect for this event listener and cannot be reset.

157	

	

Figure 23.7 Keyboard event listener

Chapter 24: Mouse events

The Mouse events category has three menu options, as shown in Figure 24.1.

Figure 24.1 Mouse click event listeners
Mouse click on object

When addMouseClickOnObjectListener is selected, a mouseClicked event listener is
created, as shown in Figure 24.2. The mouseClicked event listener fires when the mouse is
clicked on any object in the scene. NOTE: A mouse click on the scene’s ground surface or
atmosphere is ignored by this listener.

Figure 24.2 The mouseClicked event listener
The mouseClicked listener has three functions on the event (e) that may be used within its

code block to retrieve information about the object that was clicked:

• e.getScreenDistanceFromLeft returns a decimal (double) value that is the x-coordinate for
the location of the clicked object.

• e.getScreenDistanceFromBottom returns decimal (double) value that is the y-coordinate for
the location of the clicked object.

• e.getModelAtMouseLocation returns a link to the clicked object, of type SModel

As an example of using the mouseClicked event listener, we added statements to the
mouseClicked code block in Figure 24.3. The first statement declares an SModel variable named
obj. (SModel provides maximum level of compatibility with all objects in the scene that might be

159	

	

clicked.) The obj variable is assigned the clicked object as the result of a call to the
getModelAtMouseLocation function. The second statement tells that object to turn to face the
camera.

Figure 24.3 Calling a function to determine which object was clicked
The mouseClicked event listener’s add detail button has two options

(multipleEventPolicy and setOfVisuals), as shown in Figure 24.4.

Figure 24.4 Add detail options
One of the detail options is the multipleEventPolicy, which works as described earlier in

this section of the How-To guide. You may wish to review that section, see above.

 The second option is setOfVisuals, which allows you to create a custom array of one or
more objects for which this mouse click event listener will work. For example, if setOfVisuals à
Custom Array is selected, a window pops up where you may select one or more objects from the
scene, as shown in Figure 24.5.

Figure 24.5 Creating a custom array of objects for a listener
After the array has been created, the list of objects in the array is displayed in the listener’s

code block, as shown in Figure 24.6. In this example, an elephant and an ostrich objects are
selected for the setOfVisuals array. Alice will listen for a mouse click and will fire an event only if
the elephant or ostrich is clicked. A mouse click on any other object in the scene will
automatically be ignored by this listener.

Figure 24.6 The setOfVisuals lists click-able objects
Mouse click on Screen

When addMouseClickOnScreenListener is selected, a mouseClicked event listener is
created, as shown in Figure 24.7. This mouseClicked event listener fires when the mouse is
clicked anywhere on the screen. No custom array option is available and so it cannot be
restricted to specific objects.

161	

	

Figure 24.7 A mouseClicked event for anywhere on the scene
Use mouse to move object

The addDefaultModelManipulation is a mouse listener that allows the user to use the
mouse to drag an object around the screen. To create this listener, select the Mouse event
listener category and then addDefaultModelManipulation in the cascading menu, as shown
in Figure 24.8.

Figure 24.8 Select Mouse/addDefaultModelManipulation listener
The resulting event listener can be seen in Figure 24.9.

Figure 24.9 addDefaultModelManipulation event listener code
The addDefaultModelManipulation listener fires when the mouse is clicked and held on

an object in the runtime window. The mouse can be used drag an object around in the scene.
Any object within the scene can be pulled around the scene as the animation is running. For
example, the mouse could be used to move the elephant around in the scene shown in Figure
24.10.

Figure 24.10 The mouse can move objects around the scene at runtime

Chapter 25: Position/Orientation events

The Position/Orientation events category has nine menu options, as shown in Figure
25.1. All but the last menu option are listed in pairs of listeners -- one for start (or enter) and one
for end (or exit). For example, the collision event has a pair of listeners:
addCollisionStartListener and addCollisionEndListener. The following discussion
explains how to use the event listeners in pairs. Because the last menu option,
addPointOfViewChangeListener, does not have a start and end version, it will be covered
as a single item.

Figure 25.1 Position and Orientation event listeners

163	

	

Video: Collision Detection

Collision start and end

In the real world around us, a collision occurs when one object “physically touches” another
object. For example, a car being driven down the highway might veer off the road and hit a tree.
We say, “The car collided with a tree.” Of course, objects in Alice are virtual, so they don’t
“physically touch” one another. Instead, a collision listener detects a “virtual touch” when some
portion of one object is in the same location in the world as some portion of another object. For
example, a person’s hand might be in the same location in the world as a dog’s head. In other
words, the person’s hand is touching the dog’s head.

 To create a listener for a collision between two objects, select the Position/Orientation
event listener category and then addCollisionStartListener in the cascading menu, as shown
in Figure 25.5.

Figure 25.5 Create a CollisionStartListener
Two arguments are needed: setA (an array of one or more objects that might collide) and

setB (another array of one or more objects that might collide). For simple collision detection, the
arrays are most likely to contain only one object each. For example, in Figure 25.6 setA contains
only the soccerBall and setB contains only the ostrich. With these settings, only a collision
between the soccerBall and the ostrich will fire a collision event.

Figure 25.6 One object in each set, only one possible collision

More complex collision detections often have more than one object in a set, which increases
the number of possible collisions. For example, in Figure 25.7, setA has only a soccerBall but setB
has an ostrich and an elephant. In this example, two collisions are possible – a collision between
the soccerBall and the ostrich and a collision between the soccerBall and the elephant.

Figure 25.7 Two possible collisions

165	

	

Illustration of how a collision is detected
To detect a collision, Alice computes a bounding-box shape that encloses an object. For

example, in Figure 25.8 a computed bounding box can be seen surrounding an ostrich.

Figure 25.8 Computed bounding box surrounding an ostrich

Suppose the elephant uses its trunk to toss a ball to the ostrich. If the ball enters the bounding
box around the ostrich, the ball starts to collide with the ostrich as shown in Figure 25.9 and the
addCollisionStartListener will fire. It is important to note a collision end listener works
similarly, except it would fire when the ball leaves the bounding box surrounding the ostrich.

Figure 25.9 Ball collides with ostrich

It is important to note that this collision detection technique is not a perfect means of
detecting collision. It works well in most situations – but it is possible to occasionally misfire. As
an example, consider the situation shown in figure 25.10. In this screenshot, you can see that the
soccerBall has entered the bounding box space, but it is up a little higher off the ground than in

the previous screenshot. So, it has entered the space surrounded by the bounding box but it
hasn’t yet collided with a part of the ostrich’s body. The collision listener will fire! But, the sharp-
eyed viewer might realize that the ball hasn’t quite reached its target.

Figure 25.10 Collision detected, but a little too soon

Video: Proximity Detection

Proximity enter and exit

A proximity listener detects when an object enters or exits a boundary space around another
object. Unlike collision, the two objects do not have to actually come in direct contact with one
another. A proximity listener will fire when another object enters or exits a bounded space
surrounding a given object. For example, an electric dog fence sets off a vibrator on a dog’s collar
if the dog crosses over the outer boundary of the owner’s yard.

To create a proximity listener, select the Position/Orientation event listener category and
then addProximityEnterListener in the cascading menu, as shown in Figure 25.11.

Figure 25.11 Create a ProximityEnterListener

167	

	

Two arrays of objects are needed: setA (an array of one or more objects that might enter a
proximity boundary) and setB (a target set of one or more objects, each having a bounded space
that might be entered). For example, in Figure 25.12 setA contains elephant and the ostrich and
setB contains only the pond.

Figure 25.12 Two sets of objects for proximity enter listener
The third argument for creating a proximity listener is a distance that defines the bounded

space around each object in setB. As shown in Figure 25.13, a distance of 5 meters is selected. In
this example, when the elephant or ostrich wanders within 5 meters of the pond, that object is
identified as a thirstyObject. (For brevity, the code is not shown here. However, the idea is to
have the thirstyObject wade into the pond for a drink of water.) It is important to note a
proximity exit listener works similarly, except it would fire when either the elephant or ostrich
leaves the bounded area surrounding the pond.

Figure 25.13 Example: Event listener for proximityEntered

Proximity Enter/Exit Multiple Events
 The proximity enter and exit listeners work with arrays of objects. Because multiple objects
are being tracked, it is possible for more than one object to enter or exit a bounded area at the
same time. The multiple event policy (discussed previously for Time events), can be set to:

• IGNORE – just do the action once (default setting).

• ENQUEUE – repeat the action each time the event occurs, in succession (wait for the
previous action to finish before doing it again)

• COMBINE – repeat the action each time the event occurs, concurrently (don’t wait for
the previous action to finish)

View enter and exit listeners

A view listener detects when an object enters-into or exits-from the view of the camera. In
this discussion, we use “off-screen” to describe an object that is not currently within view of the
camera. A view enter listener will fire when an off-screen object moves into the camera’s view. A
view exit listener will fire when an object currently in view by the camera moves off-screen.

To create a view enter listener, select the Position/Orientation event listener category
and then addViewEnterListener in the cascading menu, as shown in Figure 25.14.

Figure 25.14 Create a ViewEnterListener
An array (set) is used to track the objects that might enter or exit the scene space currently in

view of the camera. For example, in Figure 25.15 the set of objects contains elephant and the
ostrich.

169	

	

Figure 25.15 An array of objects that might enter and leave the scene view
As shown in Figure 25.16, the object entering the scene view can be selected to perform some

action. In this example, the entering object plays an audio of footsteps walking slowly. It is
important to note a view exit listener works similarly, except it would fire when either the
elephant or ostrich leaves the area currently in view by the camera.

Figure 25.16 Example: Event listener for viewEntered

View Enter/Exit Multiple Events
 The camera’s view enter and exit listeners work with arrays of objects. Because multiple
objects are being tracked, it is possible for more than one object to enter or exit the camaera’s
viewing area at the same time. The multiple event policy (discussed previously for Time events),
can be set to:

• IGNORE – just do the action once (default setting).

• ENQUEUE – repeat the action each time the event occurs, in succession (wait for the
previous action to finish before doing it again)

• COMBINE – repeat the action each time the event occurs, concurrently (don’t wait for
the previous action to finish)

Occlusion start and end listeners

An occlusion start listener detects when an object becomes (at least partially) hidden by
another object. An occlusion end listener detects when an object which was (at least partially)
hidden by another object becomes totally visible.

To create an occlusion start listener, select the Position/Orientation event listener
category and then addOcclusionStartListener in the cascading menu, as shown in Figure
25.17.

Figure 25.17 Create an OcclusionStartListener
Two arrays of one or more objects is needed: setA (an array of one or more objects that

might be in the foreground) and setB (an array of one or more objects that might be hidden in
the background). For example, in Figure 25.18, setA contains the baobabTree and the
termiteMound while setB contains the elephant and the ostrich.

Figure 25.18 Potentional foreground (setA) and background (setB) objects
During the animation, when one object is (at least partially) hidden by another object, the

occlusion start listener fires. In the listener code, as shown in Figure 25.19, two functions are
available – one to determine which object is in the foreground and which is in the background.
Code can then be written to move the hidden object back into view or to perform some other
action as part of the story or game. It is important to note an occlusion exit listener works
similarly, except it would fire when either the elephant or ostrich (which was hidden) returns to
view (and is no longer hidden).

171	

	

Figure 25.19 Functions to get foreground and background, when listener fires

Occlusion start and end Multiple Events
 The occulsio start and end listeners work with arrays of objects. Because multiple objects are
being tracked, it is possible for more than one object to occlude another at the same time. The
multiple event policy (discussed previously for Time events), can be set to:

• IGNORE – just do the action once (default setting).

• ENQUEUE – repeat the action each time the event occurs, in succession (wait for the
previous action to finish before doing it again)

• COMBINE – repeat the action each time the event occurs, concurrently (don’t wait for
the previous action to finish)

Point of view change listeners

A point of view change listener detects when an object changes its point of view (location and
orientation). For example, in a gaming application, the camera might be moved around and you
might want to reset the camera to a specific location before the next action begins.

To create a point of view change listener, select the Position/Orientation event listener
category and then addPointOfViewChangeListener in the cascading menu, as shown in
Figure 25.20.

Figure 25.20 Create PointOfViewChangeListener

An array of one or more objects is needed: set (an array of one or more objects that might be
have its point of view changed during game play or other interactive actions). For example, in
Figure 25.21, set contains only the camera. Of course, the array could contain several objects, all
with different actions to occur when their point of view changes.

Figure 25.21 An array containing one element, the camera
In this example, as shown in Figure 25.22, each time the camera’s point of view changes, it is

reset (by calling the camera’s moveAndOrientTo procedure) to the cameraMarker1 position (which
holds the original camera location and orientation).

Figure 25.22 Example: Event listener for point of view change

